赞
踩
解决思路
目前这种验证码的通用解决思路如下:
获取验证码图片,包含原图以及有缺口的图
算出缺口的位置,以及滑块要滑动的距离
通过算法模拟人工移动轨迹
通过selenium模拟操作
二、逻辑实现
1.获取验证码图片
注意:我们需要获取两张图片,第一张是完整背景图,第二张是有缺口的背景图(图片基本上是通过请求下载下来的)。
(1)经过分析发现当鼠标位于按钮是上时显示完整背景图。
(2)当鼠标点击滑动按钮不松,显示有缺口的背景图
(3)使用selenium有个方法可以对元素进行截图,先找到图片所在的html元素,然后利用selenium分别进行截图即可获取图片。
注意:如果根据请求不能够很好的分析出图片的话,就进行元素定位查找,有的时候图片是一个大div标签里面包含多个小的div标签组成,可以把某张图片拿出来做背景。
获取完整图片:
def get_full_image(driver):
"""
鼠标移动到滑块,显示完整图案
:param driver: webdriver
:return: 返回验证码背景图片Image对象
"""
webdriver.ActionChains(driver).move_to_element(slider).perform()
time.sleep(0.2)
img = driver.find_element_by_xpath('//*[@id="captcha"]/div/div[1]/div[2]/div[1]/a[2]')
if 'show' in img.get_attribute('class'):
res = img.screenshot_as_png
return Image.open(BytesIO(res))
else:
raise ValueError('获取验证码背景图片失败')
获取有缺口的图片
def get_cut_image(driver):
"""
点击滑动按钮获取有缺口图片
:param driver: webdriver
:return: 返回验证码有缺口图片的Image对象
"""
slider = driver.find_element_by_xpath('//*[@id="captcha"]/div/div[3]/div[2]')
webdriver.ActionChains(driver).click_and_hold(slider).perform()
time.sleep(0.1)
img = driver.find_element_by_xpath('//*[@id="captcha"]/div/div[1]/div[2]/div[1]/a[1]')
res = img.screenshot_as_png
cut_img = Image.open(BytesIO(res))
return Image.open(BytesIO(res))
2.找出缺口位置,计算移动距离
此过程主要算出的距离是滑块要滑动的距离
def get_distance(full_image, cut_image): full_pixies = full_image.load() cut_pixies = cut_image.load() w, h = full_image.size full_image.save('full.png') cut_image.save('cut.png') # 先找最左边不同的点 left = [] for j in range(h): for i in range(100): if abs(full_pixies[i, j][0] - cut_pixies[i, j][0]) + abs(full_pixies[i, j][1] - cut_pixies[i, j][1]) + abs( full_pixies[i, j][2] - cut_pixies[i, j][2]) > 150: left.append((i, j)) if left: break # 再找最右边不同的点 right = [] for j in range(h): for i in range(100, w): if abs(full_pixies[i, j][0] - cut_pixies[i, j][0]) + abs(full_pixies[i, j][1] - cut_pixies[i, j][1]) + abs( full_pixies[i, j][2] - cut_pixies[i, j][2]) > 150: right.append((i, j)) if right: break length = right[0][0] - left[0][0] return length ``` **3.计算滑动轨迹** 目前所有商用滑动验证码后台都有做行为校验,根据前端传递的移动轨迹,后台会进行特征校验,如果判定非人工则返回校验失败。模拟人的滑动行为,最常见的以中方法是通过加速度公式。 基本思路是,分析手动的移动轨迹后发现,是先加速后减速,所以通过加速度公式进行如下的设计: ```c def get_track(self, distance): ''' 拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速 匀变速运动基本公式: ①v=v0+at ②s=v0t+(1/2)at² ③v²-v0²=2as :param distance: 需要移动的距离 :return: 存放每0.2秒移动的距离 ''' # 初速度 v=0 # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移 t=0.3 # 位移/轨迹列表,列表内的一个元素代表0.2s的位移 tracks=[] # 当前的位移 current=0 # 到达mid值开始减速 mid=distance * 5/8 distance += 10 # 先滑过一点,最后再反着滑动回来 # a = random.randint(1,3) while current < distance: if current < mid: # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细 a = random.randint(1,3) # 加速运动 else: a = -random.randint(2,4) # 减速运动 # 初速度 v0 = v # 0.2秒时间内的位移 s = v0*t+0.5*a*(t**2) # 当前的位置 current += s # 添加到轨迹列表 tracks.append(round(s)) # 速度已经达到v,该速度作为下次的初速度 v= v0+a*t # 反着滑动到大概准确位置 for i in range(4): tracks.append(-random.randint(1,3)) # for i in range(4): # tracks.append(-random.randint(1,3)) random.shuffle(tracks) return tracks
4、滑动滑块
利用selenium,根据算出的轨迹,进行模拟滑动。
def slide(self, tracks): # slider = self.driver.find_element_by_xpath('//*[@id="captcha"]/div/div[3]/div[2]') # 鼠标点击并按住不松 # webdriver.ActionChains(self.driver).click_and_hold(self.slider).perform() # 让鼠标随机往下移动一段距离 webdriver.ActionChains(self.driver).move_by_offset(xoffset=0, yoffset=100).perform() time.sleep(0.15) for item in tracks: webdriver.ActionChains(self.driver).move_by_offset(xoffset=item, yoffset=random.randint(-2,2)).perform() # 稳定一秒再松开 time.sleep(1) webdriver.ActionChains(self.driver).release(self.slider).perform() time.sleep(1) # 随机拿开鼠标 webdriver.ActionChains(self.driver).move_by_offset(xoffset=random.randint(200, 300), yoffset=random.randint(200, 300)).perform() time.sleep(0.2) info = self.driver.find_element_by_xpath('//*[@id="login-modal"]/div/div/div/div[2]/div[1]/div[2]/div[1]/div/div[1]/div[2]/div[2]/div/div[2]/span[1]') if '验证通过' in info.text: return 1 if '验证失败' in info.text: return 2 if '再来一次' in info.text: return 3 if '出现错误' in info.text: return 4
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。