赞
踩
目录
在VGG中,卷积网络达到了19层,在GoogLeNet中,网络史无前例的达到了22层。那么,网络的精度会随着网络的层数增多而增多吗?在深度学习中,网络层数增多一般会伴着下面几个问题
- 计算资源的消耗
- 模型容易过拟合
- 梯度消失/梯度爆炸问题的产生
问题1可以通过GPU集群来解决,对于一个企业资源并不是很大的问题;
问题2的过拟合通过采集海量数据,并配合Dropout正则化等方法也可以有效避免;
问题3通过Batch Normalization也可以避免。貌似我们只要无脑的增加网络的层数,我们就能从此获益,但实验数据给了我们当头一棒。
作者发现,随着网络层数的增加,网络发生了退化(degradation)的现象:随着网络层数的增多,训练集loss逐渐下降,然后趋于饱和,当你再增加网络深度的话,训练集loss反而会增大。注意这并不是过拟合,因为在过拟合中训练loss是一直减小的。
当网络退化时,浅层网络能够达到比深层网络更好的训练效果,这时如果我们把低层的特征传到高层,那么效果应该至少不比浅层的网络效果差,或者说如果一个VGG-100网络在第98层使用的是和VGG-16第14层一模一样的特征,那么VGG-100的效果应该会和VGG-16的效果相同。所以,我们可以在VGG-100的98层和14层之间添加一条直接映射(Identity Mapping)来达到此效果。
从信息论的角度讲,由于DPI(数据处理不等式)的存在,在前向传输的过程中,随着层数的加深,Feature Map包含的图像信息会逐层减少,而ResNet的直接映射的加入,保证了 l+1 层的网络一定比 l 层包含更多的图像信息。基于这种使用直接映射来连接网络不同层直接的思想,残差网络应运而生。
残差网络是由一系列残差块组成的(图1)。一个残差块可以用表示为:
残差网络的搭建分为两步:
在实现过程中,一般是直接stack残差块的方式。
我们发现很深的网络层,由于参数初始化一般更靠近0,这样在训练的过程中更新浅层网络的参数时,很容易随着网络的深入而导致梯度消失,浅层的参数无法更新。
解释:
可以看到,假设现在需要更新b1,w2,w3,w4参数因为随机初始化偏向于0,通过链式求导我们会发现,w1w2w3相乘会得到更加接近于0的数,那么所求的这个b1的梯度就接近于0,也就产生了梯度消失的现象。
举个例子,假设已经有了一个最优化的网络结构,是18层。当我们设计网络结构的时候,我们并不知道具体多少层次的网络是最优化的网络结构,假设设计了34层网络结构。那么多出来的16层其实是冗余的,我们希望训练网络的过程中,模型能够自己训练这五层为恒等映射,也就是经过这层时的输入与输出完全一样。但是往往模型很难将这16层恒等映射的参数学习正确,那么就一定会不比最优化的18层网络结构性能好,这就是随着网络深度增加,模型会产生退化现象。它不是由过拟合产生的,而是由冗余的网络层学习了不是恒等映射的参数造成的。
ResNet使用了一个新的思想,ResNet的思想是假设我们涉及一个网络层,存在最优化的网络层次,那么往往我们设计的深层次网络是有很多网络层为冗余层的。那么我们希望这些冗余层能够完成恒等映射,保证经过该恒等层的输入和输出完全相同。具体哪些层是恒等层,这个会有网络训练的时候自己判断出来。
残差网络有什么好处呢?显而易见:因为增加了 x 项,那么该网络求 x 的偏导的时候,多了一项常数 1(对x的求导为1),所以反向传播过程,梯度连乘,也不会造成梯度消失。
可以看到X是这一层残差块的输入,也称作F(x)为残差,x为输入值,F(X)是经过第一层线性变化并激活后的输出,该图表示在残差网络中,第二层进行线性变化之后激活之前,F(x)加入了这一层输入值X,然后再进行激活后输出。在第二层输出值激活前加入X,这条路径称作shortcut连接。
把它变成ResNet的方法是加上所有跳跃连接,每两层增加一个捷径,构成一个残差块。如图所示,5个残差块连接在一起构成一个残差网络。
如果我们使用标准优化算法训练一个普通网络,比如说梯度下降法,或者其它热门的优化算法。如果没有残差,没有这些捷径或者跳跃连接,凭经验你会发现随着网络深度的加深,训练错误会先减少,然后增多。而理论上,随着网络深度的加深,应该训练得越来越好才对。也就是说,理论上网络深度越深越好。但实际上,如果没有残差网络,对于一个普通网络来说,深度越深意味着用优化算法越难训练。实际上,随着网络深度的加深,训练错误会越来越多。
但有了ResNets就不一样了,即使网络再深,训练的表现却不错,比如说训练误差减少,就算是训练深达100层的网络也不例外。有人甚至在1000多层的神经网络中做过实验,这样就让我们在训练更深网络的同时,又能保证良好的性能。也许从另外一个角度来看,随着网络越深,网络连接会变得臃肿,但是ResNet确实在训练深度网络方面非常有效。
ResNet最终更新某一个节点的参数时,由于h(x)=F(x)+x,使得链式求导后的结果如图所示,不管括号内右边部分的求导参数有多小,因为左边的1的存在,并且将原来的链式求导中的连乘变成了连加状态,都能保证该节点参数更新不会发生梯度消失或梯度爆炸现象。
我们发现,假设该层是冗余的,在引入ResNet之前,我们想让该层学习到的参数能够满足h(x)=x,即输入是x,经过该冗余层后,输出仍然为x。但是可以看见,要想学习h(x)=x恒等映射时的这层参数时比较困难的。ResNet想到避免去学习该层恒等映射的参数,使用了如上图的结构,让h(x)=F(x)+x;这里的F(x)我们称作残差项,我们发现,要想让该冗余层能够恒等映射,我们只需要学习F(x)=0。学习F(x)=0比学习h(x)=x要简单,因为一般每层网络中的参数初始化偏向于0,这样在相比于更新该网络层的参数来学习h(x)=x,该冗余层学习F(x)=0的更新参数能够更快收敛,如图所示:
假设该曾网络只经过线性变换,没有bias也没有激活函数。我们发现因为随机初始化权重一般偏向于0,那么经过该网络的输出值为[0.6 0.6],很明显会更接近与[0 0],而不是[2 1],相比与学习h(x)=x,模型要更快到学习F(x)=0。并且ReLU能够将负数激活为0,过滤了负数的线性变化,也能够更快的使得F(x)=0。这样当网络自己决定哪些网络层为冗余层时,使用ResNet的网络很大程度上解决了学习恒等映射的问题,用学习残差F(x)=0更新该冗余层的参数来代替学习h(x)=x更新冗余层的参数。
这样当网络自行决定了哪些层为冗余层后,通过学习残差F(x)=0来让该层网络恒等映射上一层的输入,使得有了这些冗余层的网络效果与没有这些冗余层的网络效果相同,这样很大程度上解决了网络的退化问题
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。