当前位置:   article > 正文

“百度飞桨深度学习“——训练过程中的参数调试_飞桨怎么调试

飞桨怎么调试
**训练过程优化思路**主要有如下五个关键环节:

1. 计算分类准确率,观测模型训练效果。
交叉熵损失函数只能作为优化目标,无法直接准确衡量模型的训练效果。准确率可以直接衡量训练效果,但由于其离散性质,不适合做为损失函数优化神经网络。

2. 检查模型训练过程,识别潜在问题。

如果模型的损失或者评估指标表现异常,通常需要打印模型每一层的输入和输出来定位问题,分析每一层的内容来获取错误的原因。

3. 加入校验或测试,更好评价模型效果。

理想的模型训练结果是在训练集和验证集上均有较高的准确率,如果训练集上的准确率高于验证集,说明网络训练程度不够;如果验证集的准确率高于训练集,可能是发生了过拟合现象。通过在优化目标中加入正则化项的办法,解决过拟合的问题。

4. 加入正则化项,避免模型过拟合。

飞桨框架支持为整体参数加入正则化项,这是通常的做法。此外,飞桨框架也支持为某一层或某一部分的网络单独加入正则化项,以达到精细调整参数训练的效果。

5. 可视化分析。

用户不仅可以通过打印或使用matplotlib库作图,飞桨还提供了更专业的可视化分析工具VisualDL,提供便捷的可视化分析方法。

##以上内容来自“百度架构师手把手带你零基础实践深度学习”课程
https://aistudio.baidu.com/aistudio/index

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/546447
推荐阅读
相关标签
  

闽ICP备14008679号