赞
踩
模板匹配: 在整个图像区域中发现与给定子图像匹配的小块区域
要素: ①模板图像T ②待检图像S
(1)模板匹配API
# 模板匹配 API
result = cv2.matchTemplate(image: Any, templ: Any, method: Any, result: Any = None, mask: Any = None)`
image: 待检图像S
templ: 模板图像T
method: 匹配方法
result: 二维矩阵,像素值代表匹配程度
cv2.TM_CCORR | 相关匹配 | 数值越大效果越好 |
cv2.TM_CCORR_NORMED | 归一化相关匹配 | 数值越大效果越好 |
cv2.TM_CCOEFF | 相关系数匹配 | 数值越大效果越好 |
cv2.TM_CCOEFF_NORMED | 相关系数匹配 | 数值越大效果越好 |
cv2.TM_SQDIFF | 平方差匹配 | 数值越小效果越好 |
cv2.TM_SQDIFF_NORMED | 平方差匹配 | 数值越小效果越好 |
(2)二维矩阵获取最大最小值及位置
# 在二维矩阵中获取最大最小值及最大最小值位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(src: Any, mask: Any = None)
min_val: 最小值
max_val: 最大值
min_loc: 最小值位置,如(2,5)
max_loc: 最大值位置,如(4,10)
(3)在图像上画出模板区域
# 在图像上画出矩形
cv2.rectangle(img: Any, pt1: Any, pt2: Any, color: Any, thickness: Any = None, lineType: Any = None, shift: Any = None)
img: 原图像
pt1: (x,y), 矩阵左上角的位置
pt2: (x+w, y+h), 矩阵右下角的位置
color: 例:(0,0,255)表示红色
thickness: 线条粗细
import cv2 import numpy as np source = cv2.imread('E:/PycharmProjects/source.jpg') tpl = cv2.imread('E:/PycharmProjects/tpl.jpg') def show(name, img): cv2.imshow(name, img) cv2.waitKey(0) show('source', source) show('template', tpl) def template_demo(): methods = [cv2.TM_CCOEFF_NORMED, cv2.TM_CCORR_NORMED, cv2.TM_SQDIFF_NORMED] th, tw = tpl.shape[:2] for md in methods: result = cv2.matchTemplate(source, tpl, md) print(type(result)) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) if md == cv2.TM_SQDIFF_NORMED: tl = min_loc else: tl = max_loc br = tl[0]+tw, tl[1]+th cv2.rectangle(source, tl, br, (0, 0, 255), 3) show('result'+np.str(md), result) show('match'+np.str(md), source) template_demo() cv2.destroyAllWindows()
原图:模板:
匹配后结果:
作出矩形框:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。