当前位置:   article > 正文

【YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进NO.59】引入ASPP模块

aspp模块

前言
作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。
链接: https://pan.baidu.com/s/1e83xPdxwmSJ0Nohc_F9nFA
提取码:关注私信后获取

一、解决问题

尝试将原YOLOv5中的sppf改为ASPP,提升精度和效果。

二、基本原理

说明:图片来自DeepLabV3 Rethinking Atrous Convolution for Semantic Image Segmentation

三、​添加方法

(1)YOLOv5网络模型更改

添加后的网络模型结构图如下(YOLOv5s基础上添加):

(2)YOLOv7网络模型更改

添加后的网络模型结构图如下(YOLOv7基础上添加,将其中的

改为 [[-1, 1, ASPP, [1024]], # 最终形成结构图如下所示:

  1. # parameters
  2. nc: 1 # number of classes
  3. depth_multiple: 1.0 # model depth multiple
  4. width_multiple: 1.0 # layer channel multiple
  5. # anchors
  6. anchors:
  7. - [12,16, 19,36, 40,28] # P3/8
  8. - [36,75, 76,55, 72,146] # P4/16
  9. - [142,110, 192,243, 459,401] # P5/32
  10. # yolov7 backbone
  11. backbone:
  12. # [from, number, module, args]
  13. [[-1, 1, Conv, [32, 3, 1]], # 0
  14. [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
  15. [-1, 1, Conv, [64, 3, 1]],
  16. [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
  17. [-1, 1, Conv, [64, 1, 1]],
  18. [-2, 1, Conv, [64, 1, 1]],
  19. [-1, 1, Conv, [64, 3, 1]],
  20. [-1, 1, Conv, [64, 3, 1]],
  21. [-1, 1, Conv, [64, 3, 1]],
  22. [-1, 1, Conv, [64, 3, 1]],
  23. [[-1, -3, -5, -6], 1, Concat, [1]],
  24. [-1, 1, Conv, [256, 1, 1]], # 11
  25. [-1, 1, MP, []],
  26. [-1, 1, Conv, [128, 1, 1]],
  27. [-3, 1, Conv, [128, 1, 1]],
  28. [-1, 1, Conv, [128, 3, 2]],
  29. [[-1, -3], 1, Concat, [1]], # 16-P3/8
  30. [-1, 1, Conv, [128, 1, 1]],
  31. [-2, 1, Conv, [128, 1, 1]],
  32. [-1, 1, Conv, [128, 3, 1]],
  33. [-1, 1, Conv, [128, 3, 1]],
  34. [-1, 1, Conv, [128, 3, 1]],
  35. [-1, 1, Conv, [128, 3, 1]],
  36. [[-1, -3, -5, -6], 1, Concat, [1]],
  37. [-1, 1, Conv, [512, 1, 1]], # 24
  38. [-1, 1, MP, []],
  39. [-1, 1, Conv, [256, 1, 1]],
  40. [-3, 1, Conv, [256, 1, 1]],
  41. [-1, 1, Conv, [256, 3, 2]],
  42. [[-1, -3], 1, Concat, [1]], # 29-P4/16
  43. [-1, 1, Conv, [256, 1, 1]],
  44. [-2, 1, Conv, [256, 1, 1]],
  45. [-1, 1, Conv, [256, 3, 1]],
  46. [-1, 1, Conv, [256, 3, 1]],
  47. [-1, 1, Conv, [256, 3, 1]],
  48. [-1, 1, Conv, [256, 3, 1]],
  49. [[-1, -3, -5, -6], 1, Concat, [1]],
  50. [-1, 1, Conv, [1024, 1, 1]], # 37
  51. [-1, 1, MP, []],
  52. [-1, 1, Conv, [512, 1, 1]],
  53. [-3, 1, Conv, [512, 1, 1]],
  54. [-1, 1, Conv, [512, 3, 2]],
  55. [[-1, -3], 1, Concat, [1]], # 42-P5/32
  56. [-1, 1, Conv, [256, 1, 1]],
  57. [-2, 1, Conv, [256, 1, 1]],
  58. [-1, 1, Conv, [256, 3, 1]],
  59. [-1, 1, Conv, [256, 3, 1]],
  60. [-1, 1, Conv, [256, 3, 1]],
  61. [-1, 1, Conv, [256, 3, 1]],
  62. [[-1, -3, -5, -6], 1, Concat, [1]],
  63. [-1, 1, Conv, [1024, 1, 1]], # 50
  64. ]
  65. # yolov7 head
  66. head:
  67. [[-1, 1, ASPP, [1024]], # 51
  68. [-1, 1, Conv, [256, 1, 1]],
  69. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  70. [37, 1, Conv, [256, 1, 1]], # route backbone P4
  71. [[-1, -2], 1, Concat, [1]],
  72. [-1, 1, Conv, [256, 1, 1]],
  73. [-2, 1, Conv, [256, 1, 1]],
  74. [-1, 1, Conv, [128, 3, 1]],
  75. [-1, 1, Conv, [128, 3, 1]],
  76. [-1, 1, Conv, [128, 3, 1]],
  77. [-1, 1, Conv, [128, 3, 1]],
  78. [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
  79. [-1, 1, Conv, [256, 1, 1]], # 63
  80. [-1, 1, Conv, [128, 1, 1]],
  81. [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  82. [24, 1, Conv, [128, 1, 1]], # route backbone P3
  83. [[-1, -2], 1, Concat, [1]],
  84. [-1, 1, Conv, [128, 1, 1]],
  85. [-2, 1, Conv, [128, 1, 1]],
  86. [-1, 1, Conv, [64, 3, 1]],
  87. [-1, 1, Conv, [64, 3, 1]],
  88. [-1, 1, Conv, [64, 3, 1]],
  89. [-1, 1, Conv, [64, 3, 1]],
  90. [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
  91. [-1, 1, Conv, [128, 1, 1]], # 75
  92. [-1, 1, MP, []],
  93. [-1, 1, Conv, [128, 1, 1]],
  94. [-3, 1, Conv, [128, 1, 1]],
  95. [-1, 1, Conv, [128, 3, 2]],
  96. [[-1, -3, 63], 1, Concat, [1]],
  97. [-1, 1, Conv, [256, 1, 1]],
  98. [-2, 1, Conv, [256, 1, 1]],
  99. [-1, 1, Conv, [128, 3, 1]],
  100. [-1, 1, Conv, [128, 3, 1]],
  101. [-1, 1, Conv, [128, 3, 1]],
  102. [-1, 1, Conv, [128, 3, 1]],
  103. [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
  104. [-1, 1, Conv, [256, 1, 1]], # 88
  105. [-1, 1, MP, []],
  106. [-1, 1, Conv, [256, 1, 1]],
  107. [-3, 1, Conv, [256, 1, 1]],
  108. [-1, 1, Conv, [256, 3, 2]],
  109. [[-1, -3, 51], 1, Concat, [1]],
  110. [-1, 1, Conv, [512, 1, 1]],
  111. [-2, 1, Conv, [512, 1, 1]],
  112. [-1, 1, Conv, [256, 3, 1]],
  113. [-1, 1, Conv, [256, 3, 1]],
  114. [-1, 1, Conv, [256, 3, 1]],
  115. [-1, 1, Conv, [256, 3, 1]],
  116. [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
  117. [-1, 1, Conv, [512, 1, 1]], # 101
  118. [75, 1, RepConv, [256, 3, 1]],
  119. [88, 1, RepConv, [512, 3, 1]],
  120. [101, 1, RepConv, [1024, 3, 1]],
  121. [[102,103,104], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
  122. ]

四、总结

预告一下:下一篇内容将继续分享深度学习算法相关改进方法。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦

PS:该方法不仅仅是适用改进YOLOv5,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。

最后,有需要的请关注私信我吧。关注免费领取深度学习算法学习资料!

YOLO系列算法改进方法 | 目录一览表

[

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/869334
推荐阅读
相关标签