赞
踩
前言
作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。
链接: https://pan.baidu.com/s/1e83xPdxwmSJ0Nohc_F9nFA
提取码:关注私信后获取
尝试将原YOLOv5中的sppf改为ASPP,提升精度和效果。
说明:图片来自DeepLabV3 Rethinking Atrous Convolution for Semantic Image Segmentation
添加后的网络模型结构图如下(YOLOv5s基础上添加):
添加后的网络模型结构图如下(YOLOv7基础上添加,将其中的
改为 [[-1, 1, ASPP, [1024]], # 最终形成结构图如下所示:
- # parameters
- nc: 1 # number of classes
- depth_multiple: 1.0 # model depth multiple
- width_multiple: 1.0 # layer channel multiple
-
- # anchors
- anchors:
- - [12,16, 19,36, 40,28] # P3/8
- - [36,75, 76,55, 72,146] # P4/16
- - [142,110, 192,243, 459,401] # P5/32
-
- # yolov7 backbone
- backbone:
- # [from, number, module, args]
- [[-1, 1, Conv, [32, 3, 1]], # 0
-
- [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
- [-1, 1, Conv, [64, 3, 1]],
-
- [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
- [-1, 1, Conv, [64, 1, 1]],
- [-2, 1, Conv, [64, 1, 1]],
- [-1, 1, Conv, [64, 3, 1]],
- [-1, 1, Conv, [64, 3, 1]],
- [-1, 1, Conv, [64, 3, 1]],
- [-1, 1, Conv, [64, 3, 1]],
- [[-1, -3, -5, -6], 1, Concat, [1]],
- [-1, 1, Conv, [256, 1, 1]], # 11
-
- [-1, 1, MP, []],
- [-1, 1, Conv, [128, 1, 1]],
- [-3, 1, Conv, [128, 1, 1]],
- [-1, 1, Conv, [128, 3, 2]],
- [[-1, -3], 1, Concat, [1]], # 16-P3/8
- [-1, 1, Conv, [128, 1, 1]],
- [-2, 1, Conv, [128, 1, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [[-1, -3, -5, -6], 1, Concat, [1]],
- [-1, 1, Conv, [512, 1, 1]], # 24
-
- [-1, 1, MP, []],
- [-1, 1, Conv, [256, 1, 1]],
- [-3, 1, Conv, [256, 1, 1]],
- [-1, 1, Conv, [256, 3, 2]],
- [[-1, -3], 1, Concat, [1]], # 29-P4/16
- [-1, 1, Conv, [256, 1, 1]],
- [-2, 1, Conv, [256, 1, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [[-1, -3, -5, -6], 1, Concat, [1]],
- [-1, 1, Conv, [1024, 1, 1]], # 37
-
- [-1, 1, MP, []],
- [-1, 1, Conv, [512, 1, 1]],
- [-3, 1, Conv, [512, 1, 1]],
- [-1, 1, Conv, [512, 3, 2]],
- [[-1, -3], 1, Concat, [1]], # 42-P5/32
- [-1, 1, Conv, [256, 1, 1]],
- [-2, 1, Conv, [256, 1, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [[-1, -3, -5, -6], 1, Concat, [1]],
- [-1, 1, Conv, [1024, 1, 1]], # 50
- ]
-
- # yolov7 head
- head:
- [[-1, 1, ASPP, [1024]], # 51
-
- [-1, 1, Conv, [256, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [37, 1, Conv, [256, 1, 1]], # route backbone P4
- [[-1, -2], 1, Concat, [1]],
-
- [-1, 1, Conv, [256, 1, 1]],
- [-2, 1, Conv, [256, 1, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
- [-1, 1, Conv, [256, 1, 1]], # 63
-
- [-1, 1, Conv, [128, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [24, 1, Conv, [128, 1, 1]], # route backbone P3
- [[-1, -2], 1, Concat, [1]],
-
- [-1, 1, Conv, [128, 1, 1]],
- [-2, 1, Conv, [128, 1, 1]],
- [-1, 1, Conv, [64, 3, 1]],
- [-1, 1, Conv, [64, 3, 1]],
- [-1, 1, Conv, [64, 3, 1]],
- [-1, 1, Conv, [64, 3, 1]],
- [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
- [-1, 1, Conv, [128, 1, 1]], # 75
-
- [-1, 1, MP, []],
- [-1, 1, Conv, [128, 1, 1]],
- [-3, 1, Conv, [128, 1, 1]],
- [-1, 1, Conv, [128, 3, 2]],
- [[-1, -3, 63], 1, Concat, [1]],
-
- [-1, 1, Conv, [256, 1, 1]],
- [-2, 1, Conv, [256, 1, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [-1, 1, Conv, [128, 3, 1]],
- [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
- [-1, 1, Conv, [256, 1, 1]], # 88
-
- [-1, 1, MP, []],
- [-1, 1, Conv, [256, 1, 1]],
- [-3, 1, Conv, [256, 1, 1]],
- [-1, 1, Conv, [256, 3, 2]],
- [[-1, -3, 51], 1, Concat, [1]],
-
- [-1, 1, Conv, [512, 1, 1]],
- [-2, 1, Conv, [512, 1, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [-1, 1, Conv, [256, 3, 1]],
- [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
- [-1, 1, Conv, [512, 1, 1]], # 101
-
- [75, 1, RepConv, [256, 3, 1]],
- [88, 1, RepConv, [512, 3, 1]],
- [101, 1, RepConv, [1024, 3, 1]],
-
- [[102,103,104], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
- ]
预告一下:下一篇内容将继续分享深度学习算法相关改进方法。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦
PS:该方法不仅仅是适用改进YOLOv5,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。
最后,有需要的请关注私信我吧。关注免费领取深度学习算法学习资料!
[
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。