当前位置:   article > 正文

6. 较全的Open3D点云数据处理(python)_open3d可视化点云

open3d可视化点云

        注意:以下内容来自博客爆肝5万字❤️Open3D 点云数据处理基础(Python版)_python 点云 焊缝-CSDN博客,这篇博客写的全且详细,在这里是为了记笔记方便查看,并非抄袭。

1.点云的读写

代码如下:

  1. import open3d as o3d
  2. if __name__ == '__main__':
  3. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  4. print(pcd)

输出结果如下:

如下代码:

pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd", format='xyz')

2.点云可视化

2.1 单个点云的可视化

代码如下:

  1. import open3d as o3d
  2. if __name__ == '__main__':
  3. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  4. print(pcd)
  5. o3d.visualization.draw_geometries([pcd])

输出结果如下:

可视化结果如下:

2.2 同一窗口可视化多个点云

代码如下:

  1. import open3d as o3d
  2. if __name__ == '__main__':
  3. pcd1 = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  4. pcd2 = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_1.pcd")
  5. #可视化代码如下
  6. o3d.visualization.draw_geometries([pcd1, pcd2])

可视化结果如下:

可视化属性设置:

函数原型1:

draw_geometries(geometry_list, window_name='Open3D', width=1920, height=1080, left=50, top=50, point_show_normal=False, mesh_show_wireframe=False, mesh_show_back_face=False)

函数原型2:

draw_geometries(geometry_list, window_name='Open3D', width=1920, height=1080, left=50, top=50, point_show_normal=False, mesh_show_wireframe=False, mesh_show_back_face=False, lookat, up, front, zoom)

代码如下:

  1. import open3d as o3d
  2. if __name__ == '__main__':
  3. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  4. # 法线估计
  5. radius = 0.01 # 搜索半径
  6. max_nn = 30 # 邻域内用于估算法线的最大点数
  7. pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius, max_nn)) # 执行法线估计
  8. # 可视化
  9. o3d.visualization.draw_geometries([pcd],
  10. window_name="可视化参数设置",
  11. width=1000,
  12. height=800,
  13. left=300,
  14. top=300,
  15. point_show_normal=True)

可视化结果如下:

3. k_d tree 和 Octree

3.1 k_d tree

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. # 将点云设置为灰色
  7. pcd.paint_uniform_color([0.5, 0.5, 0.5])
  8. # 建立KDTree
  9. pcd_tree = o3d.geometry.KDTreeFlann(pcd)
  10. # 将第1500个点设置为紫色
  11. pcd.colors[15000] = [0.5, 0, 0.5]
  12. # 使用K近邻,将第1500个点最近的5000个点设置为蓝色
  13. print("使用K近邻,将第1500个点最近的5000个点设置为蓝色")
  14. k = 5000 # 设置K的大小
  15. [num_k, idx_k, _] = pcd_tree.search_knn_vector_3d(pcd.points[15000], k) # 返回邻域点的个数和索引
  16. np.asarray(pcd.colors)[idx_k[1:], :] = [0, 0, 1] # 跳过最近邻点(查询点本身)进行赋色
  17. print("k邻域内的点数为:", num_k)
  18. # 使用半径R近邻,将第15000个点半径(0.2)范围内的点设置为红色
  19. print("使用半径R近邻,将第1500个点半径(0.02)范围内的点设置为红色")
  20. radius = 0.2 # 设置半径大小
  21. [num_radius, idx_radius, _] = pcd_tree.search_radius_vector_3d(pcd.points[15000], radius) # 返回邻域点的个数和索引
  22. np.asarray(pcd.colors)[idx_radius[1:], :] = [1, 0, 0] # 跳过最近邻点(查询点本身)进行赋色
  23. print("半径r邻域内的点数为:", num_radius)
  24. # 使用混合邻域,将半径R邻域内不超过max_num个点设置为绿色
  25. print("使用混合邻域,将第15000个点半径R邻域内不超过max_num个点设置为绿色")
  26. max_nn = 2000 # 半径R邻域内最大点数
  27. [num_hybrid, idx_hybrid, _] = pcd_tree.search_hybrid_vector_3d(pcd.points[15000], radius, max_nn)
  28. np.asarray(pcd.colors)[idx_hybrid[1:], :] = [0, 1, 0] # 跳过最近邻点(查询点本身)进行赋色
  29. print("混合邻域内的点数为:", num_hybrid)
  30. print("->正在可视化点云...")
  31. o3d.visualization.draw_geometries([pcd])

结果如下:

可视化结果如下:

3.2 Octree

3.2.1 从点云中构建Octree

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. # ------------------------- 构建Octree --------------------------
  7. print('octree 分割')
  8. octree = o3d.geometry.Octree(max_depth=4)
  9. octree.convert_from_point_cloud(pcd, size_expand=0.01)
  10. print("->正在可视化Octree...")
  11. o3d.visualization.draw_geometries([octree])

可视化结果如下:

3.2.2 从体素网格中构建Octree

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. # ------------------------- 构建Octree --------------------------
  7. print('体素化')
  8. voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=0.2)
  9. print("体素:", voxel_grid)
  10. print("正在可视化体素...")
  11. o3d.visualization.draw_geometries([voxel_grid])
  12. print('Octree 分割')
  13. octree = o3d.geometry.Octree(max_depth=4)
  14. octree.create_from_voxel_grid(voxel_grid)
  15. print("Octree:", octree)
  16. print("正在可视化Octree...")
  17. o3d.visualization.draw_geometries([octree])

输出结果如下:

可视化结果如下:

4.点云滤波

4.1 体素下采样

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. print("->正在可视化原始点云")
  7. o3d.visualization.draw_geometries([pcd])
  8. print("->正在体素下采样...")
  9. voxel_size = 0.5
  10. downpcd = pcd.voxel_down_sample(voxel_size)
  11. print(downpcd)
  12. print("->正在可视化下采样点云")
  13. o3d.visualization.draw_geometries([downpcd])

输出结果如下:

可视化结果如下:

4.2 半径滤波

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. # ------------------------- 半径滤波 --------------------------
  7. print("->正在进行半径滤波...")
  8. num_points = 20 # 邻域球内的最少点数,低于该值的点为噪声点
  9. radius = 0.05 # 邻域半径大小
  10. # 执行半径滤波,返回滤波后的点云sor_pcd和对应的索引ind
  11. sor_pcd, ind = pcd.remove_radius_outlier(num_points, radius)
  12. sor_pcd.paint_uniform_color([0, 0, 1])
  13. print("半径滤波后的点云:", sor_pcd)
  14. sor_pcd.paint_uniform_color([0, 0, 1])
  15. # 提取噪声点云
  16. sor_noise_pcd = pcd.select_by_index(ind, invert=True)
  17. print("噪声点云:", sor_noise_pcd)
  18. sor_noise_pcd.paint_uniform_color([1, 0, 0])
  19. # ===========================================================
  20. # 可视化半径滤波后的点云和噪声点云
  21. o3d.visualization.draw_geometries([sor_pcd, sor_noise_pcd])

可视化结果如下:

5.点云特征提取

5.1 法线估计

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. print("->正在估计法线并可视化...")
  7. radius = 0.01 # 搜索半径
  8. max_nn = 30 # 邻域内用于估算法线的最大点数
  9. pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius, max_nn)) # 执行法线估计
  10. o3d.visualization.draw_geometries([pcd], point_show_normal=True)
  11. print("->正在打印前10个点的法向量...")
  12. print(np.asarray(pcd.normals)[:10, :])

结果输出如下:

可视化结果如下:

6. 点云分割

6.1 DBSCAN算法

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. if __name__ == '__main__':
  5. # pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  6. pcd = o3d.io.read_point_cloud("datas/1.pcd")
  7. print(pcd)
  8. print("->正在DBSCAN聚类...")
  9. eps = 0.5 # 同一聚类中最大点间距
  10. min_points = 50 # 有效聚类的最小点数
  11. with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
  12. labels = np.array(pcd.cluster_dbscan(eps, min_points, print_progress=True))
  13. max_label = labels.max() # 获取聚类标签的最大值 [-1,0,1,2,...,max_label],label = -1 为噪声,因此总聚类个数为 max_label + 1
  14. print(f"point cloud has {max_label + 1} clusters")
  15. colors = plt.get_cmap("tab20")(labels / (max_label if max_label > 0 else 1))
  16. colors[labels < 0] = 0 # labels = -1 的簇为噪声,以黑色显示
  17. pcd.colors = o3d.utility.Vector3dVector(colors[:, :3])
  18. o3d.visualization.draw_geometries([pcd])

输出结果如下:

可视化结果如下:

6.2 RANSAC平面分割

代码如下:

  1. import open3d as o3d
  2. if __name__ == '__main__':
  3. # pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  4. pcd = o3d.io.read_point_cloud("datas/1.pcd")
  5. print(pcd)
  6. print("->正在RANSAC平面分割...")
  7. distance_threshold = 0.2 # 内点到平面模型的最大距离
  8. ransac_n = 3 # 用于拟合平面的采样点数
  9. num_iterations = 1000 # 最大迭代次数
  10. # 返回模型系数plane_model和内点索引inliers,并赋值
  11. plane_model, inliers = pcd.segment_plane(distance_threshold, ransac_n, num_iterations)
  12. # 输出平面方程
  13. [a, b, c, d] = plane_model
  14. print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0")
  15. # 平面内点点云
  16. inlier_cloud = pcd.select_by_index(inliers)
  17. inlier_cloud.paint_uniform_color([0, 0, 1.0])
  18. print(inlier_cloud)
  19. # 平面外点点云
  20. outlier_cloud = pcd.select_by_index(inliers, invert=True)
  21. outlier_cloud.paint_uniform_color([1.0, 0, 0])
  22. print(outlier_cloud)
  23. # 可视化平面分割结果
  24. o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud])

可视化结果如下:

6.3 隐藏点剔除

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. #pcd = o3d.io.read_point_cloud("datas/1.pcd")
  6. print(pcd)
  7. print("->正在剔除隐藏点...")
  8. diameter = np.linalg.norm(np.asarray(pcd.get_max_bound()) - np.asarray(pcd.get_min_bound()))
  9. print("定义隐藏点去除的参数")
  10. camera = [0, 0, diameter] # 视点位置
  11. radius = diameter * 100 # 噪声点云半径,The radius of the sperical projection
  12. _, pt_map = pcd.hidden_point_removal(camera, radius) # 获取视点位置能看到的所有点的索引 pt_map
  13. # 可视点点云
  14. pcd_visible = pcd.select_by_index(pt_map)
  15. pcd_visible.paint_uniform_color([0, 0, 1]) # 可视点为蓝色
  16. print("->可视点个数为:", pcd_visible)
  17. # 隐藏点点云
  18. pcd_hidden = pcd.select_by_index(pt_map, invert=True)
  19. pcd_hidden.paint_uniform_color([1, 0, 0]) # 隐藏点为红色
  20. print("->隐藏点个数为:", pcd_hidden)
  21. print("->正在可视化可视点和隐藏点点云...")
  22. o3d.visualization.draw_geometries([pcd_visible, pcd_hidden])

输出结果如下:

可视化结果如下:

7.点云曲面重建

7.1 Alpha shapes

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. #pcd = o3d.io.read_point_cloud("datas/1.pcd")
  6. print(pcd)
  7. # ------------------------- Alpha shapes -----------------------
  8. alpha = 0.03
  9. print(f"alpha={alpha:.3f}")
  10. mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(pcd, alpha)
  11. mesh.compute_vertex_normals()
  12. o3d.visualization.draw_geometries([mesh], mesh_show_back_face=True)

可视化结果如下:

alpha=0.5

alpha=0.01

7.2 Ball pivoting

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. # ---------------------- 定义点云体素化函数 ----------------------
  4. def get_mesh(_relative_path):
  5. mesh = o3d.io.read_triangle_mesh(_relative_path)
  6. mesh.compute_vertex_normals()
  7. return mesh
  8. # =============================================================
  9. # ------------------------- Ball pivoting --------------------------
  10. print("->Ball pivoting...")
  11. _relative_path = "bunny.ply" # 设置相对路径
  12. N = 2000 # 将点划分为N个体素
  13. pcd = get_mesh(_relative_path).sample_points_poisson_disk(N)
  14. o3d.visualization.draw_geometries([pcd])
  15. radii = [0.005, 0.01, 0.02, 0.04]
  16. rec_mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting(pcd, o3d.utility.DoubleVector(radii))
  17. o3d.visualization.draw_geometries([pcd, rec_mesh])
  18. # ==============================================================

可视化结果如下:

8.点云空间变换

8.1 translate 平移

pcd.translate((tx,ty,tz),relative=True)

9.点云配准

点云配准看我的另一篇博客4.点云数据的配准_点云叠加配准-CSDN博客

10. 其他点云计算方法

10.1 计算点云间的距离

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd1 = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. pcd2 = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_1.pcd")
  6. print("->正在点云1每一点到点云2的最近距离...")
  7. dists = pcd1.compute_point_cloud_distance(pcd2)
  8. dists = np.asarray(dists)
  9. print("->正在打印前10个点...")
  10. print(dists[:10])
  11. print("->正在提取距离大于3.56的点")
  12. ind = np.where(dists > 0.1)[0]
  13. pcd3 = pcd1.select_by_index(ind)
  14. print(pcd3)
  15. o3d.visualization.draw_geometries([pcd3])

输出结果如下:

可视化结果如下:

10.2 计算点云最小包围盒

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. print("->正在计算点云轴向最小包围盒...")
  7. aabb = pcd.get_axis_aligned_bounding_box()
  8. aabb.color = (1, 0, 0)
  9. print("->正在计算点云最小包围盒...")
  10. obb = pcd.get_oriented_bounding_box()
  11. obb.color = (0, 1, 0)
  12. o3d.visualization.draw_geometries([pcd, aabb, obb])

可视化结果如下:

10.3  计算点云凸包

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. print("->正在计算点云凸包...")
  7. hull, _ = pcd.compute_convex_hull()
  8. hull_ls = o3d.geometry.LineSet.create_from_triangle_mesh(hull)
  9. hull_ls.paint_uniform_color((1, 0, 0))
  10. o3d.visualization.draw_geometries([pcd, hull_ls])

可视化结果如下:

10.4 点云体素化

10.4.1 简单方法

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. # --------------------------- 体素化点云 -------------------------
  7. print('执行体素化点云')
  8. voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=0.005)
  9. print("正在可视化体素...")
  10. o3d.visualization.draw_geometries([voxel_grid])

可视化结果如下:

10.4.2 复杂方法

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. # ---------------------- 定义点云体素化函数 ----------------------
  4. def get_mesh(_relative_path):
  5. mesh = o3d.io.read_triangle_mesh(_relative_path)
  6. mesh.compute_vertex_normals()
  7. return mesh
  8. # =============================================================
  9. # ------------------------- 点云体素化 --------------------------
  10. print("->正在进行点云体素化...")
  11. _relative_path = "bunny.ply" # 设置相对路径
  12. N = 2000 # 将点划分为N个体素
  13. pcd = get_mesh(_relative_path).sample_points_poisson_disk(N)
  14. # fit to unit cube
  15. pcd.scale(1 / np.max(pcd.get_max_bound() - pcd.get_min_bound()),
  16. center=pcd.get_center())
  17. pcd.colors = o3d.utility.Vector3dVector(np.random.uniform(0, 1, size=(N, 3)))
  18. print("体素下采样点云:", pcd)
  19. print("正在可视化体素下采样点云...")
  20. o3d.visualization.draw_geometries([pcd])
  21. print('执行体素化点云')
  22. voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=0.05)
  23. print("正在可视化体素...")
  24. o3d.visualization.draw_geometries([voxel_grid])
  25. # ===========================================================

可视化结果如下:

10.5 计算点云质心

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. print(f'pcd质心:{pcd.get_center()}')

输出结果如下:

10.6 根据索引提取点云

select_by_index(self, indices, invert=False)

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. """------------------- 根据索引提取点云 --------------------"""
  7. print("->正在根据索引提取点云...")
  8. idx = list(range(20000)) # 生成 从019999的列表
  9. # 索引对应的点云(内点)
  10. inlier_pcd = pcd.select_by_index(idx)
  11. inlier_pcd.paint_uniform_color([1, 0, 0])
  12. print("内点点云:", inlier_pcd)
  13. # 索引外的点云(外点)
  14. outlier_pcd = pcd.select_by_index(idx, invert=True) # 对索引取反
  15. outlier_pcd.paint_uniform_color([0, 1, 0])
  16. print("外点点云:", outlier_pcd)
  17. o3d.visualization.draw_geometries([inlier_pcd, outlier_pcd])
  18. """========================================================"""

可视化结果如下:

10.7 点云赋色

代码如下:

  1. import open3d as o3d
  2. import numpy as np
  3. if __name__ == '__main__':
  4. pcd = o3d.io.read_point_cloud("D:\AI\yq\clouds\datas\DemoICPPointClouds\\cloud_bin_0.pcd")
  5. print(pcd)
  6. print("->正在点云赋色...")
  7. pcd.paint_uniform_color([1,0.706,0])
  8. print("->正在可视化赋色后的点云...")
  9. o3d.visualization.draw_geometries([pcd])
  10. print("->正在保存赋色后的点云")
  11. o3d.io.write_point_cloud("color.pcd", pcd, True) # 默认false,保存为Binarty;True 保存为ASICC形式

可视化结果如下:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/894293?site
推荐阅读
相关标签
  

闽ICP备14008679号