赞
踩
李飞飞团队具身智能最新成果来了:
大模型接入机器人,把复杂指令转化成具体行动规划,无需额外数据和训练。
从此,人类可以很随意地用自然语言给机器人下达指令,如:
打开上面的抽屉,小心花瓶!
大语言模型+视觉语言模型就能从3D空间中分析出目标和需要绕过的障碍,帮助机器人做行动规划。
然后重点来了, 真实世界中的机器人在未经“培训”的情况下,就能直接执行这个任务。
新方法实现了零样本的日常操作任务轨迹合成,也就是机器人从没见过的任务也能一次执行,连给他做个示范都不需要。
可操作的物体也是开放的,不用事先划定范围,开瓶子、按开关、拔充电线都能完成。
目前项目主页和论文都已上线,代码即将推出,并且已经引起学术界广泛兴趣。
一位前微软研究员评价到:这项研究走在了人工智能系统最重要和最复杂的前沿。
具体到机器人研究界也有同行表示:给运动规划领域开辟了新世界。
还有本来没看到AI危险性的人,因为这项AI结合机器人的研究而改变看法。
李飞飞团队将该系统命名为VoxPoser,如下图所示,它的原理非常简单。
首先,给定环境信息(用相机采集RGB-D图像)和我们要执行的自然语言指令。
接着,LLM(大语言模型)根据这些内容编写代码,所生成代码与VLM(视觉语言模型)进行交互,指导系统生成相应的操作指示地图,即3D Value Map。
所谓3D Value Map,它是Affordance Map和Constraint Map的总称,既标记了“在哪里行动”,也标记了“如何行动”。
如此一来,再搬出动作规划器,将生成的3D地图作为其目标函数,便能够合成最终要执行的操作轨迹了。
而从这个过程我们可以看到,相比传统方法需要进行额外的预训练,这个方法用大模型指导机器人如何与环境进行交互,所以直接解决了机器人训练数据稀缺的问题。
更进一步,正是由于这个特点,它也实现了零样本能力,只要掌握了以上基本流程,就能hold任何给定任务。
在具体实现中,作者将VoxPoser的思路转化为一个优化问题,即下面这样一个复杂的公式:
它考虑到了人类下达的指令可能范围很大,并且需要上下文理解,于是将指令拆解成很多子任务,比如开头第一个示例就由“抓住抽屉把手”和“拉开抽屉”组成。
VoxPoser要实现的就是优化每一个子任务,获得一系列机器人轨迹,最终最小化总的工作量和工作时间。
而在用LLM和VLM将语言指令映射为3D地图的过程中,系统考虑到语言可以传达丰富的语义空间,便利用“感兴趣的实体(entity of interest)”来引导机器人进行操作,也就是通过3DValue Map中标记的值来反应哪个物体是对它具有“吸引力”的,那些物体是具有“排斥性”。
还是以开头的例子举
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。