当前位置:   article > 正文

sklearn机器学习之逻辑斯蒂回归(乳腺癌数据集)

sklearn机器学习之逻辑斯蒂回归(乳腺癌数据集)

1.导入相应包

from sklearn.linear_model import LogisticRegression as LR
from sklearn.datasets import load_breast_cancer
import numpy as np
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
from sklearn.metrics import accuracy_score
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

2.准备数据集

data = load_breast_cancer()
X = data.data
y = data.target
data.data.shape
  • 1
  • 2
  • 3
  • 4

输出数据的维度为(569, 30)

3.定义L1和L2正则项的逻辑斯蒂回归

lrl1 = LR(penalty='l1', solver='liblinear', C=0.5, max_iter=1000)
lrl2 = LR(penalty='l2', solver='liblinear', C=0.5, max_iter=1000)
lrl1.fit(X, y)
lrl1.coef_
lrl2.fit(X, y)
lrl2.coef_
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

内置属性coef_可以查看权重参数

4.查看参数C值对模型的影响

#分别存储正则项L1和L2的训练集正确率
l1 = []
l2 = []
#分别存储正则项L1和L2的测试集正确率
l1test = []
l2test = []
Xtrain ,Xtest, Ytrain, Ytest = train_test_split(X, y, test_size=0.3, random_state=30)
#将C值分范围进行建模并存储正确率
for i in np.linspace(0.05, 1, 19):
    lrl1 = LR(penalty='l1', solver='liblinear', C=i, max_iter=1000)
    lrl2 = LR(penalty='l2', solver='liblinear', C=i, max_iter=1000)
    lrl1.fit(Xtrain, Ytrain)
    l1.append(accuracy_score(lrl1.predict(Xtrain), Ytrain))
    l1test.append(accuracy_score(lrl1.predict(Xtest), Ytest))
    lrl2.fit(Xtrain, Ytrain)
    l2.append(accuracy_score(lrl2.predict(Xtrain), Ytrain))
    l2test.append(accuracy_score(lrl2.predict(Xtest), Ytest))
graph = [l1, l2, l1test, l2test]
color = ["green", "black", "lightgreen", "gray"]
label = ['l1', 'l2', 'l1test', 'l2test']
plt.figure()
#一次将曲线绘制并设置颜色和标签
for i in range(len(graph)):
    plt.plot(np.linspace(0.05, 1, 19), graph[i], color[i], label=label[i])
plt.legend(loc=4)
plt.savefig(r"C:\Users\86377\Desktop\1.png")
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

绘制出来的图像为:
在这里插入图片描述

可见,至少在我们的乳腺癌数据集下,两种正则化的结果区别不大。但随着C的逐渐变大,正则化的强度越来越小,模型在训练集和测试集上的表现都呈上升趋势,直到C=0.8左右,训练集上的表现依然在走高,但模型在未知数据集上的表现开始下跌,这时候就是出现了过拟合。我们可以认为,C设定为0.8会比较好。在实际使用时,基本就默认使用l2正则化,如果感觉到模型的效果不好,那就换L1试试看。

5.通过模型选择特征

#norm_order为正则项为1
X_embedded = SelectFromModel(LR_, norm_order=1).fit_transform(X, y)
X_embedded.shape
  • 1
  • 2
  • 3

得到选取特征矩阵的维度为(569, 9)

6.调整模型方法一:通过设置threshold(无效方法)

fullx = []
fsx = []
threshold = np.linspace(0, abs(LR_.fit(X, y).coef_).max(), 20)
k = 0
for i in threshold:
    X_embedded = SelectFromModel(LR_, threshold=i).fit_transform(X, y)
    fullx.append(cross_val_score(LR_, X, y, cv=10).mean())
    fsx.append(cross_val_score(LR_, X_embedded, y, cv=10).mean())
    print(threshold[k], X_embedded.shape[1])
    k += 1
plt.plot(threshold, fullx, label='fullx')
plt.plot(threshold, fsx, label='fsx')
plt.xticks(threshold)
plt.legend()
plt.savefig(r"C:\Users\86377\Desktop\2.png")
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

绘制的图像如下:
在这里插入图片描述
这种方法其实是比较无效的,大家可以用学习曲线来跑一跑:当threshold越来越大,被删除的特征越来越
多,模型的效果也越来越差,模型效果最好的情况下需要保证有17个以上的特征。实际上我画了细化的学习曲线,
如果要保证模型的效果比降维前更好,我们需要保留25个特征,这对于现实情况来说,是一种无效的降维:需要
30个指标来判断病情,和需要25个指标来判断病情,对医生来说区别不大。

7.调整模型方法二:设置模型中的C值选取(有效方法)

fullx = []
fsx = []
C = np.arange(0.01, 10.01, 0.5)
for i in C:
    LR_ = LR(solver='liblinear', C=i, random_state=420)
    fullx.append(cross_val_score(LR_, X, y, cv=10).mean())
    X_embeded = SelectFromModel(LR_, norm_order=1).fit_transform(X, y)

    fsx.append(cross_val_score(LR_, X_embedded, y, cv=10).mean())
print(max(fsx), C[fsx.index(max(fsx))])
plt.figure(figsize=(20, 5))
plt.plot(C, fullx, label='fullx')
plt.plot(C, fsx, label='fsx')
plt.xticks(C)
plt.legend()
plt.savefig(r"C:\Users\86377\Desktop\3.png")
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

在这里插入图片描述
这里我们可以选取最好的时候的C值,并可以更缩小范围去搜索最优参数。

8.梯度下降(max_iter参数)

l2 = []
l2test = []
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, y, test_size=0.3, random_state=420)
for i in range(1, 201, 10):
    lrl2 = LR(penalty='l2', solver='liblinear', max_iter=i)
    lrl2.fit(Xtrain, Ytrain)
    l2.append(accuracy_score(lrl2.predict(Xtrain), Ytrain))
    l2test.append(accuracy_score(lrl2.predict(Xtest), Ytest))
graph = [l2, l2test]
color = ["black", "gray"]
label = ["L2", "L2test"]
plt.figure(figsize=(20,5))
for i in range(len(graph)):
    plt.plot(np.arange(1, 201, 10), graph[i], color[i], label=label[i])
plt.legend(loc=4)
plt.xticks(np.arange(1, 201, 10))
plt.savefig(r"C:\Users\86377\Desktop\4.png")
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

通过设置max_iter参数来查看训练集和测试集正确率变化,图像如下
在这里插入图片描述
可以看到随着迭代次数增大,模型正确率也有所提高,且初期比后期提高更快。

9.多分类问题(对比两种参数时正确率)

from sklearn.datasets import load_iris
iris = load_iris()
#分别设置两种不同的参数
for multi_class in ['multinomial', 'ovr']:
    clf = LR(solver='sag', max_iter=100, random_state=42, multi_class=multi_class).fit(iris.data, iris.target)
    print("training score : %.3f (%s)" % (clf.score(iris.data, iris.target), multi_class))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

最终结果为:
training score : 0.987 (multinomial)
training score : 0.960 (ovr)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/928221
推荐阅读
相关标签
  

闽ICP备14008679号