当前位置:   article > 正文

GEE代码实例教程详解:洪水灾害监测_sentinel1 洪灾监测 gee

sentinel1 洪灾监测 gee

简介

在本篇博客中,我们将使用Google Earth Engine (GEE) 进行洪水灾害监测。通过分析Sentinel-1雷达数据,我们可以识别特定时间段内的洪水变化情况。

背景知识

Sentinel-1数据集

Sentinel-1是欧洲空间局提供的雷达卫星数据集,它能够提供连续的地表监测,即使在云层覆盖的情况下也能获取数据

洪水监测

洪水监测是评估洪水灾害影响和进行灾害管理的重要手段。利用雷达数据的后向散射变化可以识别洪水事件。

完整代码

// 定义研究区域的坐标点
var cor = [
  [54.07394733345745, 36.81321992370517],
  [54.79904498970745, 36.81321992370517],
  [54.79904498970745, 37.45259869689526],
  [54.07394733345745, 37.45259869689526],
  [54.07394733345745, 36.81321992370517]
];

// 创建多边形区域
var roi = ee.Geometry.Polygon(cor);

// 将地图中心设置为研究区域
Map.centerObject(roi);

// 定义时间范围
var year_start = '2019';
var year_end = '2020';

// 定义去斑函数
function speckel(img) {
  return img.focalMedian(100, 'square', 'meters')
    .copyProperties(img, img.propertyNames());
}

// 获取2019年3月的Sentinel-1数据
var after = ee.ImageCollection("COPERNICUS/S1_GRD")
  .filterBounds(roi)
  .filterDate(year_start, year_end)
  .filter(ee.Filter.calendarRange(3, 3, 'month'))
  .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
  .filter(ee.Filter.eq('instrumentMode', 'IW'))
  .select('VV')
  .map(speckel)
  .min();

// 将“之后”的图像添加到地图上
Map.addLayer(after.clip(roi), [], 'after', false);

// 获取2019年2月的Sentinel-1数据
var before = ee.ImageCollection("COPERNICUS/S1_GRD")
  .filterBounds(roi)
  .filterDate(year_start, year_end)
  .filter(ee.Filter.calendarRange(2, 2, 'month'))
  .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
  .filter(ee.Filter.eq('instrumentMode', 'IW'))
  .select('VV')
  .map(speckel)
  .min();

// 将“之前”的图像添加到地图上
Map.addLayer(before.clip(roi), [], 'before', false);

// 计算洪水变化情况
var change = before.subtract(after).rename('flood');

// 将洪水变化图像添加到地图上
Map.addLayer(change.clip(roi), [], 'flood', false);

// 打印洪水变化直方图
print(
  ui.Chart.image.histogram(change, roi, 30)
);

// 应用阈值来识别洪水区域
Map.addLayer(change.gt(7).clip(roi), [], 'flood_thr', false);

// 定义洪水阈值
var flood_thr = change.gt(7);
var flood_mask = flood_thr.updateMask(flood_thr);
var flood_area = flood_mask.multiply(ee.Image.pixelArea().divide(1e6));

// 计算洪水区域面积
var area_sum = flood_area.reduceRegion({
  reducer: ee.Reducer.sum(),
  geometry: roi,
  scale: 100
}).get('flood');

// 打印洪水区域面积
print(ee.Number(area_sum).round());
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81

代码详解

1. 定义研究区域

创建一个多边形区域roi,用于限定分析的地理范围,并设置地图中心。

2. 定义去斑函数

定义speckel函数,使用局部中值滤波去除Sentinel-1图像的斑点噪声。

3. 获取Sentinel-1数据

获取“之前”和“之后”的Sentinel-1数据,分别对应洪水发生前后的时间段。

4. 计算洪水变化情况

通过“之前”和“之后”的图像相减,计算洪水变化情况。

5. 可视化洪水变化

将洪水变化图像添加到地图上,并打印直方图。

6. 应用阈值识别洪水区域

使用阈值gt(7)来识别洪水区域,并将结果添加到地图上。

7. 计算洪水区域面积

计算洪水区域的总面积,并打印结果。

结论

本教程展示了如何使用GEE和Sentinel-1雷达数据进行洪水灾害监测。通过计算洪水前后的雷达后向散射差异,我们可以识别洪水区域并估算洪水面积。

进一步探索

GEE提供了丰富的工具和方法来进行环境和灾害监测分析。在后续的教程中,我们将继续探索GEE在不同领域的应用。

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号