赞
踩
动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。动态规划中每一个状态一定是由上一个状态推导出来的。区分于贪心,贪心没有状态推导,而是从局部直接选最优的,
动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。
如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。所以贪心解决不了动态规划的问题。
递推公式决定了dp数组要如何初始化 ,
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。
示例 1:
示例 2:
示例 3:
提示:
思路分析:
首先定义一个一个一维dp数组来保存递归的结果
1. 确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]
2. 确定递推公式
此处递推公式已经给了dp[i]=dp[i-1]+dp[i-2];
3.dp数组初始化
题目已经给了dp[0]=0,dp[1]=1;
4. 确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
5.举例推导dp数组
当N为10的时候,dp数组应该是如下的数列:
0 1 1 2 3 5 8 13 21 34 55
如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。
- int fib(int n) {
- if (n <= 1) return n; // 防止数组越界
- vector<int>dp(n + 1); // 注意边界,dp[n]对应n+1个元素
- dp[0] = 0;
- dp[1] = 1;
- for (int i = 2; i < n; i++) { // 从前往后遍历
- dp[i] = dp[i - 1] + dp[i - 2];
- }
- return dp[n];
- }
- };
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
示例 2:
1. 确定dp数组以及下标的含义
dp[i]的定义为: 爬到第n阶楼梯有dp[i]种方法
2. 确定递推公式
因为一次只能爬两层,所以dp[i]要么是从i-1层来,要么是从i-2层来,上i-1层楼梯,有dp[i - 1]种方法,上i-2层楼梯,有dp[i - 2]种方法,dp[i]就是 dp[i - 1]与dp[i - 2]之和,所以dp[i] = dp[i - 1] + dp[i - 2] 。
3.dp数组初始化
上一层楼只有一种方法dp[1]=1;上两层楼可以一步到,也可以分两步到,共有两种方法,dp[2]=2;
4. 确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
5.举例推导dp数组
当N为10的时候,dp数组应该是如下的数列:
1 2 3 5 8 13 21 34 55
- int climbStairs(int n) {
- if (n <= 1) return n; // 防止越界
- vector<int> dp(n + 1);
- dp[1] = 1;
- dp[2] = 2;
- for (int i = 3; i <= n; i++) { // 注意i是从3开始的
- dp[i] = dp[i - 1] + dp[i - 2];
- }
- return dp[n];
- }
扩展:如果是一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。
- class Solution {
- public:
- int climbStairs(int n) {
- vector<int> dp(n + 1, 0);
- dp[0] = 1; // 必须从0开始代表各结点从原点出发直接一步到达dp[i]
- for (int i = 1; i <= n; i++) {
- for (int j = 1; j <= m; j++) {
- if (i - j >= 0) dp[i] += dp[i - j];
- }
- }
- return dp[n];
- }
- };
给你一个整数数组 cost
,其中 cost[i]
是从楼梯第 i
个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0
或下标为 1
的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20] 输出:15 解释:你将从下标为 1 的台阶开始。 - 支付 15 ,向上爬两个台阶,到达楼梯顶部。 总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1] 输出:6 解释:你将从下标为 0 的台阶开始。 - 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。 - 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。 - 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。 - 支付 1 ,向上爬一个台阶,到达楼梯顶部。 总花费为 6 。
提示:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。
dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。
2.确定递推公式
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。
那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?
一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
3.dp数组如何初始化
看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0],dp[1]推出。题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,所以初始化 dp[0] = 0,dp[1] = 0;
4. 确定遍历顺序
dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。
拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:
0 0 1 2 2 3 3 4 4 5 6
- int minCostClimbingStairs(vector<int>& cost) {
- vector<int> dp(cost.size() + 1);
- dp[0] = 0; // 默认第一步都是不花费体力的
- dp[1] = 0;
- for (int i = 2; i <= cost.size(); i++) {
- dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
- }
- return dp[cost.size()];
- }
有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
1.确定dp数组以及下标的含义
dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
2. 确定递推公式
有两个方向推出来dp[i][j],
所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
3.dp数组如何初始化
如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。
、状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。
dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
- for (int j = 0 ; j < weight[0]; j++) { // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。
- dp[0][j] = 0;
- }
- // 正序遍历
- for (int j = weight[0]; j <= bagweight; j++) {
- dp[0][j] = value[0];
- }
从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。
最终
- vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
- for (int j = weight[0]; j <= bagweight; j++) {
- dp[0][j] = value[0];
- }
在如下图中,可以看出,有两个遍历的维度:物品与背包重量
先遍历物品,然后遍历背包重量的代码。
- // weight数组的大小 就是物品个数
- for(int i = 1; i < weight.size(); i++) { // 遍历物品
- for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
- if (j < weight[i]) dp[i][j] = dp[i - 1][j]; // 装不下
- else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
- }
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。