当前位置:   article > 正文

神经网络如何实现分类,神经网络基本概念_神经网络做分类

神经网络做分类

 人工神经网络分类方法

从20世纪80年代末期,人工神经网络方法开始应用于遥感图像的自动分类。

目前,在遥感图像的自动分类方面,应用和研究比较多的人工神经网络方法主要有以下几种:(1)BP(BackPropagation)神经网络,这是一种应用较广泛的前馈式网络,属于有监督分类算法,它将先验知识融于网络学习之中,加以最大限度地利用,适应性好,在类别数少的情况下能够得到相当高的精度,但是其网络的学习主要采用误差修正算法,识别对象种类多时,随着网络规模的扩大,需要的计算过程较长,收敛缓慢而不稳定,且识别精度难以达到要求。

(2)Hopfield神经网络。属于反馈式网络。主要采用Hebb规则进行学习,一般情况下计算的收敛速度较快。

这种网络是美国物理学家J.J.Hopfield于1982年首先提出的,它主要用于模拟生物神经网络的记忆机理。

Hopfield神经网络状态的演变过程是一个非线性动力学系统,可以用一组非线性差分方程来描述。

系统的稳定性可用所谓的“能量函数”进行分析,在满足一定条件下,某种“能量函数”的能量在网络运行过程中不断地减少,最后趋于稳定的平衡状态。

Hopfield网络的演变过程是一种计算联想记忆或求解优化问题的过程。(3)Kohonen网络。

这是一种由芬兰赫尔辛基大学神经网络专家Kohonen(1981)提出的自组织神经网络,其采用了无导师信息的学习算法,这种学习算法仅根据输入数据的属性而调整权值,进而完成向环境学习、自动分类和聚类等任务。

其最大的优点是最终的各个相邻聚类之间是有相似关系的,即使识别时把样本映射到了一个错误的节点,它也倾向于被识别成同一个因素或者一个相近的因素,这就十分接近人的识别特性。

谷歌人工智能写作项目:小发猫

神经网络的分类

人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式人工智能神经网络基础入门到精通,神经网络 入门

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。

然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。

这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。人工神经网络就是模拟人思维的第二种方式。

这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

神经网络如何做分类?

神经网络BP模型

一、BP模型概述误差逆传播(ErrorBack-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。

PallWerbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。

他们在1986年出版“ParallelDistributedProcessing,ExplorationsintheMicrostructureofCognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。

BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。

网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。

在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。

随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。

BP网络主要应用于以下几个方面:1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;3)分类:把输入模式以所定义的合适方式进行分类;4)数据压缩:减少输出矢量的维数以便于传输或存储。

在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。

二、BP模型原理下面以三层BP网络为例,说明学习和应用的原理。

1.数据定义P对学习模式(xp,dp),p=1,2,…,P;输入模式矩阵X[N][P]=(x1,x2,…,xP);目标模式矩阵d[M][P]=(d1,d2,…,dP)。

三层BP网络结构输入层神经元节点数S0=N,i=1,2,…,S0;隐含层神经元节点数S1,j=1,2,…,S1;神经元激活函数f1[S1];权值矩阵W1[S1][S0];偏差向量b1[S1]。

输出层神经元节点数S2=M,k=1,2,…,S2;神经元激活函数f2[S2];权值矩阵W2[S2][S1];偏差向量b2[S2]。

学习参数目标误差ϵ;初始权更新值Δ0;最大权更新值Δmax;权更新值增大倍数η+;权更新值减小倍数η-。

2.误差函数定义对第p个输入模式的误差的计算公式为中国矿产资源评价新技术与评价新模型y2kp为BP网的计算输出。

3.BP网络学习公式推导BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。

各层输出计算公式输入层y0i=xi,i=1,2,…,S0;隐含层中国矿产资源评价新技术与评价新模型y1j=f1(z1j),j=1,2,…,S1;输出层中国矿产资源评价新技术与评价新模型y2k=f2(z2k),k=1,2,…,S2。

输出节点的误差公式中国矿产资源评价新技术与评价新模型对输出层节点的梯度公式推导中国矿产资源评价新技术与评价新模型E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。

其中中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型设输出层节点误差为δ2k=(dk-y2k)·f2′(z2k),则中国矿产资源评价新技术与评价新模型同理可得中国矿产资源评价新技术与评价新模型对隐含层节点的梯度公式推导中国矿产资源评价新技术与评价新模型E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。

因此,上式只存在对k的求和,其中中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型设隐含层节点误差为中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型同理可得中国矿产资源评价新技术与评价新模型4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb1993年德国MartinRiedmiller和HeinrichBraun在他们的论文“ADirectAdaptiveMethodforFasterBackpropagationLearning:TheRPROPAlgorithm”中,提出ResilientBackpropagation算法——弹性BP算法(RPROP)。

这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。

权改变的大小仅仅由权专门的“更新值”确定中国矿产资源评价新技术与评价新模型其中表示在模式集的所有模式(批学习)上求和的梯度信息,(t)表示t时刻或第t次学习。

权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。中国矿产资源评价新技术与评价新模型RPROP算法是根据局部梯度信息实现权步的直接修改。

对于每个权,我们引入它的各自的更新值,它独自确定权更新值的大小。

这是基于符号相关的自适应过程,它基于在误差函数E上的局部梯度信息,按照以下的学习规则更新中国矿产资源评价新技术与评价新模型其中0<η-<1<η+。

在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值应由权更新值减小倍数因子η-得到减少;如果目标函数的梯度保持它的符号,更新值应由权更新值增大倍数因子η+得到增大。

为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η–被设置到固定值η+=1.2,η-=0.5,这两个值在大量的实践中得到了很好的效果。

RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。

为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为Δmax=50.0。在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如Δmax=1.0。

我们可能达到误差减小的平滑性能。5.计算修正权值W、偏差b第t次学习,权值W、偏差b的的修正公式W(t)=W(t-1)+ΔW(t),b(t)=b(t-1)+Δb(t),其中,t为学习次数。

6.BP网络学习成功结束条件每次学习累积误差平方和中国矿产资源评价新技术与评价新模型每次学习平均误差中国矿产资源评价新技术与评价新模型当平均误差MSE<ε,BP网络学习成功结束。

7.BP网络应用预测在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。

8.神经元激活函数f线性函数f(x)=x,f′(x)=1,f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。一般用于输出层,可使网络输出任何值。

S型函数S(x)中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围(0,1)。f′(x)=f(x)[1-f(x)],f′(x)的输入范围(-∞,+∞),输出范围(0,]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。双曲正切S型函数中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围(-1,1)。

f′(x)=1-f(x)·f(x),f′(x)的输入范围(-∞,+∞),输出范围(0,1]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

阶梯函数类型1中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围{0,1}。f′(x)=0。

类型2中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围{-1,1}。f′(x)=0。

斜坡函数类型1中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围[0,1]。中国矿产资源评价新技术与评价新模型f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

类型2中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围[-1,1]。中国矿产资源评价新技术与评价新模型f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

三、总体算法1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵Xmax[N],Xmin[N];(3)隐含层的权值W1,偏差b1初始化。

情形1:隐含层激活函数f()都是双曲正切S型函数1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9))输出W1[S1][S0],b1[S1]。

情形2:隐含层激活函数f()都是S型函数1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9)输出W1[S1][S0],b1[S1]。

情形3:隐含层激活函数f()为其他函数的情形1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9)输出W1[S1][S0],b1[S1]。

(4)输出层的权值W2,偏差b2初始化1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];3)输出W2[S2][S1],b2[S2]。

2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)(1)输入参数P对模式(xp,dp),p=1,2,…,P;三层BP网络结构;学习参数。

(2)学习初始化1);2)各层W,b的梯度值,初始化为零矩阵。

(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE(4)进入学习循环epoch=1(5)判断每次学习误差是否达到目标误差要求如果MSE<ϵ,则,跳出epoch循环,转到(12)。

(6)保存第epoch-1次学习产生的各层W,b的梯度值,(7)求第epoch次学习各层W,b的梯度值,1)求各层误差反向传播值δ;2)求第p次各层W,b的梯度值,;3)求p=1,2,…,P次模式产生的W,b的梯度值,的累加。

(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值,设为第epoch次学习产生的各层W,b的梯度值,。

(9)求各层W,b的更新1)求权更新值Δij更新;2)求W,b的权更新值,;3)求第epoch次学习修正后的各层W,b。

(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE(11)epoch=epoch+1,如果epoch≤MAX_EPOCH,转到(5);否则,转到(12)。

(12)输出处理1)如果MSE<ε,则学习达到目标误差要求,输出W1,b1,W2,b2。2)如果MSE≥ε,则学习没有达到目标误差要求,再次学习。

(13)结束3.三层BP网络(含输入层,隐含层,输出层)预测总体算法首先应用Train3lBP_RPROP()学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。

函数:Simu3lBP()。1)输入参数:P个需预测的输入数据向量xp,p=1,2,…,P;三层BP网络结构;学习得到的各层权值W、偏差b。

2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出y2[S2][P],输出预测结果y2[S2][P]。四、总体算法流程图BP网络总体算法流程图见附图2。

五、数据流图BP网数据流图见附图1。

六、实例实例一全国铜矿化探异常数据BP模型分类1.全国铜矿化探异常数据准备在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。

2.模型数据准备根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。

这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。3.测试数据准备全国化探数据作为测试数据集。

4.BP网络结构隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。表8-1模型数据表续表5.计算结果图如图8-2、图8-3。

图8-2图8-3全国铜矿矿床类型BP模型分类示意图实例二全国金矿矿石量品位数据BP模型分类1.模型数据准备根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。

2.测试数据准备模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。3.BP网络结构输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。

表8-2模型数据4.计算结果结果见表8-3、8-4。表8-3训练学习结果表8-4预测结果(部分)续表。

神经网络原理及应用

神经网络原理及应用1.什么是神经网络?神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

人类的神经网络2.神经网络基础知识构成:大量简单的基础元件——神经元相互连接工作原理:模拟生物的神经处理信息的方式功能:进行信息的并行处理和非线性转化特点:比较轻松地实现非线性映射过程,具有大规模的计算能力神经网络的本质:神经网络的本质就是利用计算机语言模拟人类大脑做决定的过程。

3.生物神经元结构4.神经元结构模型xj为输入信号,θi为阈值,wij表示与神经元连接的权值,yi表示输出值判断xjwij是否大于阈值θi5.什么是阈值?

临界值。神经网络是模仿大脑的神经元,当外界刺激达到一定的阈值时,神经元才会受刺激,影响下一个神经元。

6.几种代表性的网络模型单层前向神经网络——线性网络阶跃网络多层前向神经网络(反推学习规则即BP神经网络)Elman网络、Hopfield网络、双向联想记忆网络、自组织竞争网络等等7.神经网络能干什么?

运用这些网络模型可实现函数逼近、数据聚类、模式分类、优化计算等功能。因此,神经网络广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。

虽然神经网络的应用很广,但是在具体的使用过程中到底应当选择哪种网络结构比较合适是值得考虑的。这就需要我们对各种神经网络结构有一个较全面的认识。8.神经网络应用。

神经网络ART1模型

一、ART1模型概述自适应共振理论(AdaptiveResonanceTheory)简称ART,是于1976年由美国Boston大学S.Grossberg提出来的。

这一理论的显著特点是,充分利用了生物神经细胞之间自兴奋与侧抑制的动力学原理,让输入模式通过网络双向连接权的识别与比较,最后达到共振来完成对自身的记忆,并以同样的方法实现网络的回想。

当提供给网络回想的是一个网络中记忆的、或是与已记忆的模式十分相似的模式时,网络将会把这个模式回想出来,提出正确的分类。

如果提供给网络回想的是一个网络中不存在的模式,则网络将在不影响已有记忆的前提下,将这一模式记忆下来,并将分配一个新的分类单元作为这一记忆模式的分类标志。

S.Grossberg和G.A.Carpenter经过多年研究和不断发展,至今已提出了ART1,ART2和ART3三种网络结构。

ART1网络处理双极型(或二进制)数据,即观察矢量的分量是二值的,它只取0或1。二、ART1模型原理ART1网络是两层结构,分输入层(比较层)和输出层(识别层)。

从输入层到输出层由前馈连接权连接,从输出层到输入层由反馈连接权连接。

设网络输入层有N个神经元,网络输出层有M个神经元,二值输入模式和输出向量分别为:Xp=(,,…,),Yp=(,,…,),p=1,2,…,P,其中P为输入学习模式的个数。

设前馈连接权和反馈连接权矩阵分别为W=(wnm)N×M,T=(tnm)N×M,n=1,2,…,N,m=1,2,…,M。

ART1网络的学习及工作过程,是通过反复地将输入学习模式由输入层向输出层自下而上的识别和由输出层向输入层自上而下的比较过程来实现的。

当这种自下而上的识别和自上而下的比较达到共振,即输出向量可以正确反映输入学习模式的分类,且网络原有记忆没有受到不良影响时,网络对一个输入学习模式的记忆分类则告完成。

ART1网络的学习及工作过程,可以分为初始化阶段、识别阶段、比较阶段和探寻阶段。1.初始化阶段ART1网络需要初始化的参数主要有3个:即W=(wnm)N×M,T=(tnm)N×M和ρ。

反馈连接权T=(tnm)N×M在网络的整个学习过程中取0或1二值形式。这一参数实际上反映了输入层和输出层之间反馈比较的范围或强度。由于网络在初始化前没有任何记忆,相当于一张白纸,即没有选择比较的余的。

因此可将T的元素全部设置为1,即tnm=1,n=1,2,…,N,m=1,2,…,M。(1)这意味着网络在初始状态时,输入层和输出层之间将进行全范围比较,随着学习过程的深入,再按一定规则选择比较范围。

前馈连接权W=(wnm)N×M在网络学习结束后,承担着对学习模式的记忆任务。在对W初始化时,应该给所有学习模式提供一个平等竞争的机会,然后通过对输入模式的竞争,按一定规则调整W。

W的初始值按下式设置:中国矿产资源评价新技术与评价新模型ρ称为网络的警戒参数,其取值范围为0<ρ≤1。2.识别阶段ART1网络的学习识别阶段发生在输入学习模式由输入层向输出层的传递过程中。

在这一阶段,首先将一个输入学习模式Xp=(,,…,)提供给网络的输入层,然后把作为输入学习模式的存储媒介的前馈连接权W=(wnm)N×M与表示对这一输入学习模式分类结果的输出层的各个神经元进行比较,以寻找代表正确分类结果的神经元g。

这一比较与寻找过程是通过寻找输出层神经元最大加权输入值,即神经元之间的竞争过程实现的,如下式所示:中国矿产资源评价新技术与评价新模型中国矿产资源评价新技术与评价新模型中国矿产资源评价新技术与评价新模型至此,网络的识别过程只是告一段落,并没有最后结束。

此时,神经元m=g是否真正有资格代表对输入学习模式Xp的正确分类,还有待于下面的比较和寻找阶段来进一步确定。一般情况下需要对代表同一输入学习模式的分类结果的神经元进行反复识别。

3.比较阶段ART1网络的比较阶段的主要职能是完成以下检查任务,每当给已学习结束的网络提供一个供识别的输入模式时,首先检查一下这个模式是否是已学习过的模式,如果是,则让网络回想出这个模式的分类结果;如果不是,则对这个模式加以记忆,并分配一个还没有利用过的输出层神经元来代表这个模式的分类结果。

具体过程如下:把由输出层每个神经元反馈到输入层的各个神经元的反馈连接权向量Tm=(t1m,t2m,…,tNm),m=1,2,…,M作为对已学习的输入模式的一条条记录,即让向量Tm=(t1m,t2m,…,tNm)与输出层第m个神经元所代表的某一学习输入模式Xp=(,,…,)完全相等。

当需要网络对某个输入模式进行回想时,这个输入模式经过识别阶段,竞争到神经元g作为自己的分类结果后,要检查神经元g反馈回来的向量Tg是否与输入模式相等。

如果相等,则说明这是一个已记忆过的模式,神经元g代表了这个模式的分类结果,识别与比较产生了共振,网络不需要再经过寻找阶段,直接进入下一个输入模式的识别阶段;如果不相符,则放弃神经元g的分类结果,进入寻找阶段。

在比较阶段,当用向量Tg与输入模式XP进行比较时,允许二者之间有一定的差距,差距的大小由警戒参数ρ决定。首先计算中国矿产资源评价新技术与评价新模型Cg表示向量Tg与输入模式XP的拟合度。

在式中,(tng*xn)表示向量Tg=(t1g,t2g,…,tNg)与输入模式Xp=(,,…,)的逻辑“与”。当Tg=XP时,Cg=1。

当Cg≥ρ时,说明拟合度大于要求,没有超过警戒线。以上两种情况均可以承认识别结果。

当Cg≠1且Cg>ρ时,按式(6)式(7)将前馈连接权Wg=(w1g,w2g,…,wNg)和反馈连接权Tg=(t1g,t2g,…,tNg)向着与XP更接近的方向调整。

中国矿产资源评价新技术与评价新模型tng(t+1)=tng(t)*xn,n=1,2,…,N。

(7)当Cg<ρ时,说明拟合度小于要求,超过警戒线,则拒绝识别结果,将神经元g重新复位为0,并将这个神经元排除在下次识别范围之外,网络转入寻找阶段。

4.寻找阶段寻找阶段是网络在比较阶段拒绝识别结果之后转入的一个反复探寻的阶段,在这一阶段中,网络将在余下的输出层神经元中搜索输入模式Xp的恰当分类。

只要在输出向量Yp=(,,…)中含有与这一输入模式Xp相对应、或在警戒线以内相对应的分类单元,则网络可以得到与记忆模式相符的分类结果。

如果在已记忆的分类结果中找不到与现在输入的模式相对应的分类,但在输出向量中还有未曾使用过的单元,则可以给这个输入模式分配一个新的分类单元。

在以上两种情况下,网络的寻找过程总能获得成功,也就是说共振终将发生。

三、总体算法设网络输入层有N个神经元,网络输出层有M个神经元,二值输入模式和输出向量分别为:Xp=(,,…,),Yp=(,,…,)p=1,2,…,p,其中p为输入学习模式的个数。

设前馈连接权和反馈连接权矩阵分别为W=(wnm)N×M,T=(tnm)N×M,n=1,2,…,N,m=1,2,…,M。

(1)网络初始化tnm(0)=1,中国矿产资源评价新技术与评价新模型n=1,2,…,N,m=1,2,…,M。0<ρ≤1。

(2)将输入模式Xp=(,,…,)提供给网络的输入层(3)计算输出层各神经元输入加权和中国矿产资源评价新技术与评价新模型(4)选择XP的最佳分类结果中国矿产资源评价新技术与评价新模型令神经元g的输出为1。

(5)计算中国矿产资源评价新技术与评价新模型中国矿产资源评价新技术与评价新模型判断中国矿产资源评价新技术与评价新模型当式(8)成立,转到(7),否则,转到(6)。

(6)取消识别结果,将输出层神经元g的输出值复位为0,并将这一神经元排除在下一次识别的范围之外,返回步骤(4)。

当所有已利用过的神经元都无法满足式(8),则选择一个新的神经元作为分类结果,转到步骤(7)。

(7)承认识别结果,并按下式调整连接权中国矿产资源评价新技术与评价新模型tng(t+1)=tng(t)*xn,n=1,2,…,N。

(8)将步骤(6)复位的所有神经元重新加入识别范围之内,返回步骤(2)对下一模式进行识别。(9)输出分类识别结果。(10)结束。四、实例实例为ART1神经网络模型在柴北缘-东昆仑造山型金矿预测的应用。

1.建立综合预测模型柴北缘—东昆仑地区位于青海省的西部,是中央造山带的西部成员——秦祁昆褶皱系的一部分,是典型的复合造山带(殷鸿福等,1998)。

根据柴北缘—东昆仑地区地质概括以及造山型金矿成矿特点,选择与成矿相关密切的专题数据,建立柴北缘—东昆仑地区的综合信息找矿模型:1)金矿重砂异常数据是金矿的重要找矿标志。

2)金矿水化异常数据是金矿的重要找矿标志。3)金矿的化探异常数据控制金矿床的分布。4)金矿的空间分布与通过该区的深大断裂有关。5)研究区内断裂密集程度控制金矿的产出。

6)重力构造的存在与否是金矿存在的一个标志。7)磁力构造线的存在也是金矿存在的一个重要标志。8)研究区地质复杂程度也对金矿的产出具有重要的作用。9)研究区存在的矿(化)点是一个重要的标志。

2.划分预测单元预测工作是在单元上进行的,预测工作的结果是与单元有着较为直接的联系,在找矿模型指导下,以最大限度地反映成矿信息和预测单元面积最小为原则,通过对研究区内地质、地球物理、地球化学等的综合资料分析,对可能的成矿地段圈定了预测单元。

采用网格化单元作为本次研究的预测单元,网格单元的大小是,40×40,将研究区划分成774个预测单元。

3.变量选择(表8-6)4.ART1模型预测结果ART1神经网络模型算法中,给定不同的阈值,将改变预测分类的结果。

本次实验选取得阈值为ρ=0.41,系统根据此阈值进行计算获得计算结果,并通过将不同的分类结果赋予不同的颜色,最终获得ART模型预测单元的分类结果。分类的结果是形成29个类别。

分类结果用不同的颜色表示,其具体结果地显示见图8-5。图形中颜色只代表类别号,不代表分类的好坏。将矿点专题图层叠加以后,可以看出,颜色为灰色的单元与矿的关系更为密切。

表8-6预测变量标志的选择表图8-5东昆仑—柴北缘地区基于ARTL模型的金矿分类结果图。

神经网络分类问题

神经网络是新技术领域中的一个时尚词汇。很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍所有关于神经网络的基本包括它的功能、一般结构、相关术语、类型及其应用。

“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。在本文,我会同时使用这两个互换的术语。

一个真正的神经网络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。

在这里有一个难题:我们对生物学上的神经网络知道的不多!因此,不同类型之间的神经网络体系结构有很大的不同,我们所知道的只是神经元基本的结构。

Theneuron--------------------------------------------------------------------------------虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。

基本神经元包含有synapses、soma、axon及dendrites。

Synapses负责神经元之间的连接,它们不是直接物理上连接的,而是它们之间有一个很小的空隙允许电子讯号从一个神经元跳到另一个神经元。

然后这些电子讯号会交给soma处理及以其内部电子讯号将处理结果传递给axon。而axon会将这些讯号分发给dendrites。

最后,dendrites带着这些讯号再交给其它的synapses,再继续下一个循环。如同生物学上的基本神经元,人工的神经网络也有基本的神经元。

每个神经元有特定数量的输入,也会为每个神经元设定权重(weight)。权重是对所输入的资料的重要性的一个指标。

然后,神经元会计算出权重合计值(netvalue),而权重合计值就是将所有输入乘以它们的权重的合计。每个神经元都有它们各自的临界值(threshold),而当权重合计值大于临界值时,神经元会输出1。

相反,则输出0。最后,输出会被传送给与该神经元连接的其它神经元继续剩余的计算。

Learning--------------------------------------------------------------------------------正如上述所写,问题的核心是权重及临界值是该如何设定的呢?

世界上有很多不同的训练方式,就如网络类型一样多。但有些比较出名的包括back-propagation,deltarule及Kohonen训练模式。

由于结构体系的不同,训练的规则也不相同,但大部份的规则可以被分为二大类别-监管的及非监管的。监管方式的训练规则需要“教师”告诉他们特定的输入应该作出怎样的输出。

然后训练规则会调整所有需要的权重值(这是网络中是非常复杂的),而整个过程会重头开始直至数据可以被网络正确的分析出来。监管方式的训练模式包括有back-propagation及deltarule。

非监管方式的规则无需教师,因为他们所产生的输出会被进一步评估。

Architecture--------------------------------------------------------------------------------在神经网络中,遵守明确的规则一词是最“模糊不清”的。

因为有太多不同种类的网络,由简单的布尔网络(Perceptrons),至复杂的自我调整网络(Kohonen),至热动态性网络模型(Boltzmannmachines)!

而这些,都遵守一个网络体系结构的标准。一个网络包括有多个神经元“层”,输入层、隐蔽层及输出层。输入层负责接收输入及分发到隐蔽层(因为用户看不见这些层,所以见做隐蔽层)。

这些隐蔽层负责所需的计算及输出结果给输出层,而用户则可以看到最终结果。现在,为免混淆,不会在这里更深入的探讨体系结构这一话题。

对于不同神经网络的更多详细资料可以看Generation5essays尽管我们讨论过神经元、训练及体系结构,但我们还不清楚神经网络实际做些什么。

TheFunctionofANNs--------------------------------------------------------------------------------神经网络被设计为与图案一起工作-它们可以被分为分类式或联想式。

分类式网络可以接受一组数,然后将其分类。例如ONR程序接受一个数字的影象而输出这个数字。或者PPDA32程序接受一个坐标而将它分类成A类或B类(类别是由所提供的训练决定的)。

更多实际用途可以看ApplicationsintheMilitary中的军事雷达,该雷达可以分别出车辆或树。联想模式接受一组数而输出另一组。

例如HIR程序接受一个‘脏’图像而输出一个它所学过而最接近的一个图像。联想模式更可应用于复杂的应用程序,如签名、面部、指纹识别等。

TheUpsandDownsofNeuralNetworks--------------------------------------------------------------------------------神经网络在这个领域中有很多优点,使得它越来越流行。

它在类型分类/识别方面非常出色。神经网络可以处理例外及不正常的输入数据,这对于很多系统都很重要(例如雷达及声波定位系统)。很多神经网络都是模仿生物神经网络的,即是他们仿照大脑的运作方式工作。

神经网络也得助于神经系统科学的发展,使它可以像人类一样准确地辨别物件而有电脑的速度!前途是光明的,但现在...是的,神经网络也有些不好的地方。这通常都是因为缺乏足够强大的硬件。

神经网络的力量源自于以并行方式处理资讯,即是同时处理多项数据。因此,要一个串行的机器模拟并行处理是非常耗时的。

神经网络的另一个问题是对某一个问题构建网络所定义的条件不足-有太多因素需要考虑:训练的算法、体系结构、每层的神经元个数、有多少层、数据的表现等,还有其它更多因素。

因此,随着时间越来越重要,大部份公司不可能负担重复的开发神经网络去有效地解决问题。

Conclusion--------------------------------------------------------------------------------希望您可以通过本文对神经网络有基本的认识。

Generation5现在有很多关于神经网络的资料可以查阅,包括文章及程序。我们有Hopfield、perceptrons(2个)网络的例子,及一些back-propagation个案研究。

Glossary--------------------------------------------------------------------------------NN神经网络,NeuralNetworkANNs人工神经网络,ArtificialNeuralNetworksneurons神经元synapses神经键self-organizingnetworks自我调整网络networksmodellingthermodynamicproperties热动态性网络模型。

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/235402
推荐阅读
相关标签
  

闽ICP备14008679号