当前位置:   article > 正文

floyed算法 c语言,[算法] 图论

floyed c

图的表示

邻接矩阵

int G [maxv][maxv]或 > G

数组元素存储连接与否或连接权重的信息

如果有多个边的相关属性,例如多个权重,则可以声明边的结构体 struct edge替换上面的int

如果有多个节点的相关属性,例如节点的颜色、访问时间、估计最短距离等,只需再单独声明|V|大小的一维数组即可

邻接表

vector G[maxv]

for(int i = 0; i < E; i++) {

cin >> s >> t;

G[s].push_back[t];

// G[t].push_back[s];

}

每个节点的邻接表中存储连接信息,也可以表示为 > G,但与邻接矩阵不同这只能表示无权重图,对于单权重图也需要声明边结构体:

struct edge { int to; int cost; }

vector G[maxv]

1. 搜索

对于连通图,一次搜索可访问全部节点

BFS

利用BFS可求:

无权图从给定源点出发到所以可以到达结点间的最短路径

树的直径(树的所有最短路径距离的最大值):两次BFS即可实现,第二次BFS选择第一次遍历得到的最长路径的末节点作为源节点

DFS

深度优先森林的前驱子图的深度优先森林中包含:

树边(遍历路径)、后向边(已访问过的某级父节点)、前向边(已访问过的某子节点)、横边(其他所有的边,包括不同树间的边)

第一次访问边(u,v)时,如果v为白色即树边,如果v为灰色即后向边,如果v为黑色即横向边或前向边(无向图中是不会出现前向边和横向边的)

利用DFS可求:

有向图或无向图是无环图<=>DFS不产生后向边

对于无向图这一判定算法的时间复杂度O(V)与E无关,因为对于无环的森林|E| < |V|-1,因此如果存在后向边,遍历V个结点后后向边一定已经出现

拓扑排序

DFS结束时间的反序

math?formula=O(V%2BE)

连通分量

无向图的连通分量个数即DFS森林树的颗数

有向图的强连通分量即对G和G的转置分别DFS得到的结果

有向图的单连通分量判定:

从每个点作一次DFS,得到一棵DFS树,如果没有出现DFS树内cross edge和forward edge,则此图必为单连通图

有向图的半连通分量判定:

计算强连通分量,对得到的分量图SCC进行拓扑排序,如果拓扑排序的结果线性链的各边..存在,则半连通

时间复杂度O(V+E)

衔接点、桥、双连通分量

朴素方法

对于每个点,删除该点判断图的连通性O(V(V+E))

利用深度优先森林

前驱子图的根节点是图的衔接点<=>它在前驱子图中至少有两个子节点

欧拉回路

如果图的每个节点的出度等于入度则存在欧拉回路

如果一个无向图连通图最多只有两个奇点(就是度数为奇数的点),则一定存在欧拉回路

二分图判定

二分图:若能将无向图G=(V,E)的顶点V划分为两个交集为空的顶点集,并且任意边的两个端点都分属于两个集合,则称图G为一个为二分图

二分图判定:染色法

LCA 多个点的最近公共祖先

RMQ区间最值查询

2. 连通无向图的最小生成树

最小生成树:

贪心算法 核心是找到一个安全边(u,v)加入到集合A使得 A U {(u,v)} 依然是最小生成树的一个子集

横跨切割的权重最小的边即轻量级边

Kruskal算法:集合A是森林,按权重从低到高考察每条边,如果它将两棵不同的树连接起来就加入到森林A里并完成两棵树的合并

实现:不相交数据结构

MST-Kruskal(G, w)

A = 空集

for each vertex v in G.V

make-set(v)

sort edges E in G.E in nodecreasing order

for each edge (u,v) in sorted G.E

if find-set(u) != find-set(v) //否则会形成环

A.push((u,v))

union(u,v)

return A

时间复杂度O(ElgV)

Prim算法:集合A是一棵树,每次加入连接集合A和A之外结点的所有边中权重最小的边

实现:优先队列

增加最小生成树的根节点r作为输入

v.key存在v和树中节点的所有边中的最小权重

MST-Prim(G, w, r)

for each vertex v in G.V

v.key = 无穷

v.pi = null

r.key = 0

Q = G.V

while Q 不为空

u = extract-min(Q)

for each v in G.adj[u]

if v in Q and w(u,v) < v.key

v.pi = u

v.key = w(u,v)

第一次循环队列中为MST根节点r

建堆总时间O(V)

extract-min时间

math?formula=lgV共V次

使用二叉堆

math?formula=O(VlgV%2BElgV)%20%3D%20O(ElgV)

使用斐波那契堆

math?formula=O(E%20%2B%20VlgV) 时间复杂度与迪杰斯特拉算法相同

差别主要在于for循环(E次)中v.key隐含的decrease-key操作在斐波那契堆上的执行成本可以从lgV降为1

3. 最短路径

3.1 问题分析

最短路径具有最优子结构:最短路径的子路径也是最短路

无权重图的最短路径可以直接使用BFS求解,因此本节讨论的图均有权重

最短路径问题可以包含负权重边(例如Bellman-Ford),但不支持负权重环(不过Bellman-Ford算法可以检测是否存在负权重环)

最短路径必定不包括环路,路径长度至多为|V| - 1

最短路径的表示是以源点s为根节点的一颗最短路径树,由于s到每个可以从s到达的节点的最短路径不唯一,最短路径树不唯一

三角不等式

math?formula=%5Cdelta(s%2C%20v)%20%3C%3D%20%5Cdelta(s%2C%20u)%20%2B%20w(v%2C%20u)

math?formula=%5Cdelta表示两点间最短路径

松弛操作

v.d -- 最短路径估计

Relax(u, v, w)

if v.d > u.d + w(u, v)

v.d = u.d + w(u, v)

v.pi = u

松弛满足

上界性质

math?formula=v.%20d%20%3E%3D%20%5Cdelta(s%2C%20v)

收敛性质 一旦

math?formula=v.d%20%3D%20%5Cdelta(s%2C%20v)v.d收敛不会再发生变化

非路径性质 对于不可达点

math?formula=v.d%20%3D%20%5Cinfty

3.2 单源最短路径

Bellman-Ford

每条边松弛|V| -1次(最坏情况下每次循环只松弛了一条边)之后如果存在不满足三角不等式的结点v.d > u.d + w(u,v)说明存在负权重环

时间复杂度O(VE)

Bellman-Ford的改进

改进关键是对松弛顶点的顺序重排序

Yen的改进Ex 21-1

分解图 对节点拓扑排序后两图交替松弛

DAG-Shortest-Path

DSP只适用于有向无环图

拓扑排序后按照节点依赖顺序依次对发节点发出的所有边进行松弛

时间复杂度O(V + E)

利用DSP可以求解PERT图的关键路径:

关键路径:

将图中所有权重变为负数,运行DSP 或 将松弛操作改为反向操作,初始化对应变为负无穷

Dijkstra

Dijkstra可用于有环图,但不允许存在负权重的边

贪心策略:维护一个已求出最短路径节点的集合S,以v.d为key构造最小堆,每次选择V-S中的最小堆顶,将其加入S并松弛所有与其相邻的边。注意第一次执行循环extract-min得到的是源点s。

Dijkstra(G, w, s)

for each vertex v in G.V

v.d = 无穷大

v.pi = null

s.d = 0

Q = G.V

while Q 不为空

u = extract-min(Q)

S.push(u)

for each v in G.adj[u]

if v.d > u.d + w(u, v)

v.d = u.d + w(u, v)

v.pi = u

918cb9e14af8

时间复杂度

应用

差分约束

将m*n的线性规划矩阵看作是n个节点和m条边构成的图的邻接矩阵的转置

约束图增加节点

math?formula=v_0与其他所有节点以权重为0的边连接

约束条件

math?formula=x_j%20-%20x_i%20%3C%3D%20b_k转换为

math?formula=w(x_i%2C%20x_j)%20%3D%20b_k

约束图的最短路径的解即差分约束系统的解

3.3 多源最短路径

重复平方法

类比矩阵乘法

Floyd

适用负权重边,不允许存在负权重环 O(V^3)

动态规划

递归定义最优解:

中间节点恰好经过k节点 VS 中间节点不包括k节点

918cb9e14af8

Floyd-warshall

利用Floyd求图的传递闭包

有向图的传递闭包:如果存在从i到j的路径则闭包中(i,j)有边相连

每条边权重赋值1,运行Floyd算法,根据中间求解结果是否包含无穷的边来判断 O(n^3)

稀疏图的Johnson算法-Reweight

适用负权重边,调用Bellman-ford可检测负权重环

要满足重新赋值权重后最短路径不变,新增节点s与所有节点相连且w(s,v) = 0,使用Bellman-ford计算

math?formula=%5Cdelta(s%2Cv),令

math?formula=h(v)%20%3D%20%5Cdelta(s%2Cv),则新权重

math?formula=w'(u%2Cv)%20%3D%20w(u%2Cv)%2Bh(u)-h(v)且负权重边均变为正,运行V次Dijkstra算法,最后将最短路径还原即可。

math?formula=O(V%5E2%20%5Clg%20V%2BVE)

4. 最大流

定义

流网络(连通图、单向边)

多源多汇:增加超级源点和超级汇点

存在双向边:增加一个额外节点

满足容量限制和流量守恒

流f的值为从源节点流出的总流量减流入源节点的总流量

残余网络

残余容量的反向容量最多将其正向容量抵消

918cb9e14af8

残存网络每条边必须允许大于0的流量通过

918cb9e14af8

增广路径

残余网络中从s到t的简单路径

918cb9e14af8

增广路径的残余容量

918cb9e14af8

918cb9e14af8

注意割的容量不包括反向边,而横跨任何割的净流量都相同

Ford-Fulkerson方法

初始化流为0,沿着残余网络的增广路径增加流,直至残余网络不包括任何增广路径

最大流最小割定理

三条件等价:

1.残余网络不包括任何增广路径

2.f是最大流

3.流网络的某个切割c=|f|

基本Ford-Fulkerson算法

O(E|f*|)

Edmonds-Karp算法

O(VE^2)

二分图匹配

匹配

满足每个节点最多只有一条边相连的边的子集

增加源点汇点,赋值单位权重构造G',则流网络的最大流即二分图的最大匹配

O(VE)

图论500题

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/243678
推荐阅读
相关标签
  

闽ICP备14008679号