当前位置:   article > 正文

OFDM调制解调系统的理论分析_ofdm的调制与解调

ofdm的调制与解调

目录

1.OFDM的技术基础

2.OFDM的基本原理

3.保护间隔(GI)

4.循环前缀(CP)

5.OFDM基本参数的选择

6.有用符号持续时间

7.子载波数

8.调制模式


      由于OFDM的频谱利用率高、调制技术可有效地处理信道干扰、提高系统的传输速率等因素,OFDM技术越来越受到人们的关注。随着人们对通信数据化、宽带化、个性化、移动化的要求越来越高,OFDM技术在综合无线接入领域将会获得非常广泛的应用。随着DSP芯片技术的发展,傅里叶变换和反变换等技术的渐渐引入,人们开始集中精力开发OFDM技术在移动通信领域的应用,第四代移动通信的主流技术将是OFDM技术。

1.OFDM的技术基础

       正交频分复用(OFDM)技术与频分复用(FDM)技术非常相似。OFDM技术是将高速的数据流通过串/并变换,分配到速率相对较低的若干个子信道中进行传输,不同的是,OFDM的频谱利用率更高。与FDM的主要区别有以下几方面[9]:

1)在平常的广播中,每一个基站在不同的频率上发送信号,有效地运用FDM来保证每个站点的分割隔,广播中每个站点都没同位和同步。但在OFDM信号内所有的子载波都在时间和频率上同步,使得子载波间的干扰被严格控制。这些复用的子载波载在频域中交错重叠,又因为调制的正交性且采用循环前缀作为保护间隔,所以不会发生载波间干扰(ICI)。

2)对于FDM系统而言,传输的信号必须在两个信道之间存在频率间隔来防止干扰,因此,降低了劝不动频谱利用率。而OFDM的子载波正交复用技术大大提高了频谱利用率。

       OFDM是一种多载波传输技术,可以被看作一种调制技术,也可以被看作一种复用技术。多载波传输是把数据流分解成若干子比特流,这样每个子数据流将有低得多的比特速率,用这样的低比特速率形成的低速率多状态符号再去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。

2.OFDM的基本原理

       OFDM的主要思想是将串行数据并行地调制在多个正交的子载波上,由此可以降低每个子载波的码元速率,增大码元的符号周期,提高系统的抗衰落和抗干扰能力,而且由于每个子载波的正交性,大大提高了频谱的利用率,因此非常适合移动场合中的高速传输。

        在发送端,输入的高速率数据流经过信道编码和交织后,再通过调制映射产生调制信号,插入导频信号后,经过串/并变换变成N个并行的低速率数据流,这样每N个并行数据构成一个OFDM符号。 经快速反傅里叶变换(IFFT)对每个OFDM符号的N个数据进行调制,变成时域信号为:

       式中:m为频域上的离散点;n为时域上的离散点;N为载波数目。为了在接收端能够有效的抑制码间干扰(Inter Symbol Interference,ISI),通常要在每一时域OFDM符号前加上保护间隔(Guard Interval,GI)。

        除去循环前缀(CP)经FFT变换后的信号可表示为:

       式中:H(m)为信道h(n)的傅里叶转换;Z(m)为符号间干扰和载波间干扰z(n)的傅里叶变换;W(m)是加性高斯白噪声w(n)的傅里叶变换。

3.保护间隔(GI)

      无线多径信道会使通过它的信号出现多径时延,此种多径时延如果扩展到下一个符号,就会造成符号问串扰,严重影响数字信号的传输质量。而采用OFDM技术的主要原因之一是它可以有效地防止多径时延扩展。通过把输入的数据经过串/并变换后分配到N个并行的子信道上,使每个用于去调制子载波的数据符号周期可以扩大为原输入数据符号周期的N倍,因此时延扩展与符号周期的比值也同样可降低为1/N。在OFDM系统中,为了能够最大限度地消除符号间干扰,可在每个OFDM符号之间插入保护间隔,而且该保护间隔的长度Tg一般要大于无线信道的最大时延扩展,这样一个符号的多径分量就不会对下一个符号造成干扰。

        当多径时延小于保护间隔时,可以保证在FFT的运算时间长度内,不会使信号相位跳变。所以,OFDM接收机所看到的只是存在某些相位偏移、多个单纯连续正弦波形的信号叠加,而这种叠加不会破坏子载波之间的正交性。如果多径时延超过了保护间隔,则在FFT运算时间长度内可能会出现信号相位的跳变,因此在第一路径信号与第二路径信号的叠加信号内就不再只包括单纯连续正弦波形信号,从而导致子载波之间的正交性可能遭到损坏,因此就会产生信道间干扰(ICI),使得各载波之间产生干扰。

4.循环前缀(CP)

        为了消除多径传播造成的信道之间的干扰ICI,一种有效方法是将原来宽度为T的OFDM符号进行周期性扩展,用扩展信号来填充保护间隔。将保护间隔内(持续时间用Tg表示)的信号称为循环前缀(Cyclic Prefix,CP)。在实际系统中,当OFDM符号送入信道之前,首先要加入循环前缀,然后送入信道进行传送。在接收端,先要将接收的符号开始的宽度为Tg的部分丢弃,然后将剩余的宽度为T的部分进行傅里叶变换,进行解调。在OFDM符号内加入循环前缀可以保证在一个FFT周期内,使OFDM符号的时延副本内所包含的波形周期个数也是整数,这样,时延小于保护间隔Tg的时延信号就不会在解调过程中产生信道间干扰ICI。

5.OFDM基本参数的选择

       OFDM参数的选择就是需要在多项矛盾要求中进行最优地考虑。一般来说,首先要确定三个参数:带宽、比特率以及保护间隔。通常,保护间隔的时间长度应该为应用移动环境信道下时延均方值的2~4倍。一旦确定了保护间隔,则OFDM符号周期长度就可以确定。为了能够最大程度地减少由于插入保护间隔所带来的信噪比损失,则需要OFDM符号周期长度要远远大于保护间隔长度。但是符号周期长度又不能任意大,否则在OFDM系统中将包含有更多的子载波数,从而导致子载波间隔相对减少,致使系统实现的复杂程度增加,并且还加大了系统的峰值平均功率比,同时使系统对频率偏差更加敏感。所以,在实际应用中,通常选择符号周期是保护间隔长度的5倍,这样插入保护比特所造成的信噪比损耗只有1 dB左右。

       在确定符号周期和保护间隔之后,子载波的数量可以直接用-3 dB带宽除以子载波间隔(即去掉保护间隔后的符号周期的倒数)得到或者利用所要求的比特速率除以每个子信道的比特速率来确定子载波的数量。每个信道中所传输的比特速率可以由调制类型、编码速率和符号速率来确定。

6.有用符号持续时间

        有用符号持续时间T对子载波之间间隔和译码的等待周期都有影响,为了保持数据的吞吐量,子载波数目和FFT的长度要有相对较大的数量,这样就会使有用符号持续时间增大。在实际应用中,载波的偏移和相位的稳定性会影响两个载波之间间隔的大小,如果接收机为移动着的,则载波间隔必须足够大,这样才能忽略多普勒频移。总之,选择有用符号的持续时间,必须以保证信道的稳定为前提。

7.子载波数

       子载波数目越多,有用信号越平坦,带外衰减也就越快,图形越接近矩形,越符合通信要求,但子载波数目又不能过多,如果图形越接近矩形则对接收端的滤波器要求越高(只有理想滤波器才能过滤,否则就造成交调干扰)。因此在子载波数目的选择上要综合考虑传递信息的有效性和可行性。子载波数可以由信道带宽、数据吞吐量和有用符号持续时间T所决定:

N=1/T

子载波数可以被设置为有用符号持续时间的倒数,其数值与FFT处理过的数据点相对应。

8.调制模式

        可以通过改变发射的射频信号幅度、相位和频率来调制信号。但是,对于OFDM系统来说,只能采用调制幅度和相位两种调制方法,而不能采用频率调制的方法,这是因为子载波是频率正交的,而且携带独立的信息,如果调制子载波频率会破坏这些子载波的正交特性,这就是为什么频率调制不能在OFDM系统中采用的原因。

        短波通信中可以采用MPSK和MQAM的调制方式。正交幅度调制就是要改变载波的幅度和相位,他是ASK和PAK的结合。矩形QAM信号星座具有容易产生的独特优点。此外,它们也相对容易解调。矩形QAM包括4QAM,16QAM以及64QAM等,使每个星座点分别所对应的比特数量为2,4,6。采用这种调制方法的步长必须为2,如果利用MPSK调制则可传输任意比特数量,例如1,2,3,分别对应2PSK,4PSK以及8PSK,而且MPSK调制的另一个有点就是该调制方案是等能量调制,不会由于星座点的能量不等而为OFDM系统带来PAPR较大的问题。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/507392
推荐阅读
相关标签
  

闽ICP备14008679号