当前位置:   article > 正文

堆的应用之堆排序和TOP-K_堆排序top1的时间复杂度

堆排序top1的时间复杂度

前言:

本篇主要记录堆排序及TOP-K问题的求解

目录

前言:

1、堆的应用

1.1 堆排序

1.1.1 向上调整算法建堆的时间复杂度 O(N*logN)

1.1.2 向下调整算法建堆的时间复杂度 O(N)

1.1.3 堆排序 

1.2 TOP-K问题

2、总结 


1、堆的应用

1.1 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1. 建堆
升序:建大堆
降序:建小堆

建的是大堆还是小堆取决于向上调整和向下调整中的判断语句
2. 利用堆删除思想来进行排序

建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序

1.1.1 向上调整算法建堆的时间复杂度 O(N*logN)

向上调整算法思想:

从第二个节点开始,向上调整一次,可保证这个节点及之前节点构成一个堆;找到下一个节点,调用一次向上调整,又能保证这个节点及之前所有节点构成一个堆,循环往复,对最后一个节点调用向上调整时,能保证所有节点构成一个堆。

  logN + 1 = h  即   2^{h} - 1 = N

 

  1. //向上调整算法建一个堆
  2. for (int i = 1; i < n; i++)
  3. {
  4. AdjustUp(a, i);
  5. }

1.1.2 向下调整算法建堆的时间复杂度 O(N)

向下调整算法的思想:

在向下调整中,要保证左子树和右子树均是堆,否则不能;按照这个思路,那采用向下调整建堆时,应该从下往上走,保证左右子树都是堆。

找到最后一个非叶节点(最后一个节点的父亲),调用一次向下调整;再找到前一个节点,调用一次向下调整,循环往复,直到对根节点向下调整(此时根节点的左右子树已是堆),堆就实现了。

 

  1. //用向下调整算法建一个堆
  2. for (int i = (n - 1 - 1) / 2; i >= 0; i--)
  3. {
  4. AdjustDown(a, n, i);
  5. }

 相对于向上调整算法和向下调整算法的时间复杂度,建堆选择向下调整算法

1.1.3 堆排序 

堆排序思想:

1、建一个堆,有两种方法:循环调用向上调整或者循环调用向下调整

2、利用堆删除思想,将堆顶元素和最后一个元素交换,对前 n - 1 个节点向下调整,循环往复

时间复杂度O(N * logN)

空间复杂度O(1),对原数组进行排序,未开辟新空间

  1. void HeapSort(int* a, int n)
  2. {
  3. //向上调整算法建一个大堆
  4. for (int i = 1; i < n; i++)
  5. {
  6. AdjustUp(a, i);
  7. }
  8. //用向下调整算法建一个大堆
  9. for (int i = (n - 1 - 1) / 2; i >= 0; i--)
  10. {
  11. AdjustDown(a, n, i);
  12. }
  13. size_t end = n - 1;
  14. while (end > 0)
  15. {
  16. Swap(&a[0], &a[end]);
  17. AdjustDown(a, end, 0);
  18. end--;
  19. }
  20. }


1.2 TOP-K问题

即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前K个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。 

  1. // TopK 问题求解
  2. void PrintTopK(int* a, int n, int k)
  3. {
  4. // 1. 建堆--用a中前k个元素建堆
  5. int* kminHeap = (int*)malloc(sizeof(int) * k);
  6. assert(kminHeap);
  7. for (int i = 0; i < k; ++i)
  8. {
  9. kminHeap[i] = a[i];
  10. }
  11. // 建小堆
  12. for (int j = (k - 1 - 1) / 2; j >= 0; --j)
  13. {
  14. AdjustDown(kminHeap, k, j);
  15. }
  16. // 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
  17. for (int i = k; i < n; ++i)
  18. {
  19. if (a[i] > kminHeap[0])
  20. {
  21. kminHeap[0] = a[i];
  22. AdjustDown(kminHeap, k, 0);
  23. }
  24. }
  25. for (int j = 0; j < k; ++j)
  26. {
  27. printf("%d ", kminHeap[j]);
  28. }
  29. printf("\n");
  30. free(kminHeap);
  31. }
  32. void TestTopk()
  33. {
  34. int n = 10000;
  35. int* a = (int*)malloc(sizeof(int) * n);
  36. srand(time(0));
  37. for (size_t i = 0; i < n; ++i)
  38. {
  39. a[i] = rand() % 1000000;
  40. }
  41. a[5] = 1000000 + 1;
  42. a[1231] = 1000000 + 2;
  43. a[531] = 1000000 + 3;
  44. a[5121] = 1000000 + 4;
  45. a[115] = 1000000 + 5;
  46. a[2305] = 1000000 + 6;
  47. a[99] = 1000000 + 7;
  48. a[76] = 1000000 + 8;
  49. a[423] = 1000000 + 9;
  50. a[0] = 1000000 + 10;
  51. PrintTopK(a, n, 10);
  52. }
  53. int main()
  54. {
  55. TestTopk();
  56. return 0;
  57. }

 打印结果:

 时间复杂度O(k + logk * (N - K)), 建堆 + 向下调整N - K个数

 空间复杂度O(k)

N很大但是K很小啊,空间复杂度不高且很快

2、总结 

堆排序效率极其高,时间复杂度很小;对于一个堆来说,排序数字越多,量越大,快就体现出来了,排序时,跳过1个,2个,4个,8个,……,以2的n次方指数形式增长,这就是快的关键所在。TOP-K问题,处理海量数据,内存加载不下,换个思路,建立K个数据构成的堆,让其他N - K个数据依次遍历,与堆顶元素进行比较。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/716749
推荐阅读
相关标签
  

闽ICP备14008679号