当前位置:   article > 正文

【深蓝学院】手写VIO第2章--IMU传感器--笔记_g-sensitivity

g-sensitivity

0. 内容

在这里插入图片描述

1. 旋转运动学

角速度的推导:
在这里插入图片描述
左= ω ∧ \omega^{\wedge} ω,而 ω \omega ω是在z轴方向运动,= θ ′ [ 0 , 0 , 1 ] T \theta^{\prime}[0,0,1]^T θ[0,0,1]T
两边取模后得到结论: 线速度大小=半径 * 角速度大小

在这里插入图片描述

在这里插入图片描述

其中,对旋转矩阵求导根据第一章的结论:
在这里插入图片描述
还有绿色箭头的公式,下面的推导看的不是很明白
实际上是把R的导数变成求极限的形式,但是这个极限怎么求的我不是很理解,然后就是下面这个公式
R ω ∧ = ( R ω ) ∧ R R\omega^\wedge=(R\omega)^\wedge R Rω=(Rω)R
在这里插入图片描述

在这里插入图片描述
a = R i b ∗ a b a = R_{ib}*a^b a=Ribab表示body下的加速度在 I I I系下的表示,仍是body下的加速度,只是表示在 I I I系。
知道了这个科氏力之后,测量出科氏力以及运动的速度就能知道角速度了,这就是gyro的一个基本原理。

2. IMU测量模型及运动模型

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
光纤陀螺仪一般较贵,原理是:光跑一圈路程是 2 π r 2\pi r 2πr,但如果在旋转,那就是 2 π r + x 2\pi r+x 2πr+x,测量出来这个x,用光速再进行相关计算就得到此时的角速度。

陀螺仪测角速度要两个轴:一个主动运动轴,一个敏感轴,敏感轴用于预测量科氏力
在这里插入图片描述
音叉振动陀螺
在这里插入图片描述
音叉两端左方向相反的正弦运动(什么叫正弦运动?音叉不是固定的吗? ),同一时刻其速度相反,±v,受到的科氏力大小相同方向相反F,整个音叉收到向右的力为f,左右也都为f,把受到的力相减,抵消之后,就能测出两倍科氏力2F,同时,知道自然块运动的速度,就能算出科氏力。

科氏力为 2 v ∗ ω 2v*\omega 2vω

在这里插入图片描述
这个G-sensitivity是灵敏度系数,比如机械振动会不会对IMU测量数据造成影响,如果不那么灵敏,就不会影响,如果比较灵敏,就需要考虑IMU减震等。

加速度计是否需要考虑科氏力影响?
不需要。
在这里插入图片描述
因为
1.即使开始加速时质量块会加速,但最终会达到平衡,速度v=0,最终的科氏力为0,
2.加计不是主动驱动的高速运动,会很缓慢地动,最终速度为0。

3. IMU误差模型

3.1 误差模型

在这里插入图片描述

3.2 确定性误差

确定性误差有bias和scale,

  1. bias随着时间会累积,使得位姿的误差 p e r r p_{err} perr越来越大;
  2. scale可看成是原始物理 v , ω v,\omega v,ω与ADC后的传感器输出值之间的比值,需要标定。
    在这里插入图片描述

scale是尺度,Misalignment是轴偏,如yz轴投影到x轴上的轴偏。
不考虑bias时,测量出的 l a x = s x x ∗ a x + m x y ∗ a y + m x z ∗ a z l_{ax}=s_{xx}*a_x + m_{xy}*a_y + m_{xz}*a_z lax=sxxax+mxyay+mxzaz,尺度轴偏矩阵主对角线为尺度,其他为轴偏
在这里插入图片描述
其他确定性误差还有

  1. 运行误差(每次都不一样),
  2. 温度相关误差(温度补偿或者标定方法)。
  3. 环境相关误差(高度,室内外等)
    在这里插入图片描述

六面法标定bias和scale,分别将xzy三个轴朝上或者下放置,测出的应该是±g,但是会受到bias影响.于是 b = l u p + l d o w n 2 b = \frac{l^{up}+l^{down}}{2} b=2lup+ldown就是两倍bias的均值,反之,相减绝对值就是 2 g 2g 2g,一除就是尺度scale。

3.2.1 六面法标定acc

在这里插入图片描述

l 1 l_1 l1 ~ l 6 l_6 l6是加速度测量值,S,b是待标定的尺度轴偏矩阵和bias, a 1 a_1 a1 ~ a 6 a_6 a6是加速度的理论值,其中 g = 9.81 g=9.81 g=9.81是标量。如此可以标定出 S S S b b b
L = S [ a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ] + b L=S[a_1, a_2,a_3,a_4,a_5,a_6]+b L=S[a1,a2,a3,a4,a5,a6]+b
最小二乘法能够求出S和b共12个元素。
在这里插入图片描述

3.2.2 六面法标定gyro

同理,标定gyro也可以使用这种方法,需要有一个角速度较为精确的转台,也用6面,相对加计,此时我们知道较为精确的角速度 ω 1 \omega_1 ω1~ ω 6 \omega_6 ω6,即可标出gyro的尺度、轴偏、bias。
在这里插入图片描述

3.2.3 温度标定

一般采用soak method,精度较高。
在这里插入图片描述

3.3 IMU随机误差

3.3.1 IMU随机误差的介绍

bias的导数满足高斯分布 n ( t ) n(t) n(t)(注意是导数而不是bias本身),这个bias的分布被称为随机游走(random walk)。
在这里插入图片描述

ADC采样时间段内认为数据是常数,采集的数据=理想数据+bias和随机游走的噪声带来的部分,这个不是常数,所以需要进行积分
在这里插入图片描述
仅考虑高斯白噪声时(假设bias和n(t)是相互独立的)的协方差计算推导:
这里的 τ \tau τ实际上就是一个自变量,可以是 x , y , z x,y,z x,y,z等任意一个,是因为 t t t在这里要代表时间,所以使用了 τ \tau τ作为这里的自变量。本身高斯白噪声是满足高斯分布 n ( t ) n(t) n(t)的,就如(13)式所定义。


协方差相关补充:
在这里插入图片描述
在这里插入图片描述
方差是协方差的特殊情况,方差实际上是对自身的协方差,即 D ( X ) = C o v ( X , X ) D(X)=Cov(X,X) D(X)=Cov(X,X),也就是X的二阶原点矩。

补充对于一二阶矩的定义:(一阶矩是期望 E ( X ) E(X) E(X),二阶原点矩是 E ( X 2 ) E(X^2) E(X2),二阶非原点矩 E ( ( ( X − E ( X ) ) 2 ) E(\quad((X-E(X))^2\quad) E(((XE(X))2),平方是因为如果 E ( X ) E(X) E(X)不为有0时,若出现了负值,则会使整体二阶矩偏大,如果加了平方就相当于加上了绝对值,就更能体现偏离均值的范围。
在这里插入图片描述


这里的协方差标准写法应该是 C o v ( n d 2 [ k ] ) Cov(n_d^2[k]) Cov(nd2[k]),写法做了省略: C o v ( n d [ k ] , n d [ k ] ) = D ( n d [ k ] ) = E ( n d 2 [ k ] ) − E ( n d [ k ] ) 2 = E ( n d 2 [ k ] ) Cov(n_d[k],n_d[k])=D(n_d[k])=E(n_d^2[k])-E(n_d[k])^2=E(n_d^2[k]) Cov(nd[k],nd[k])=D(nd[k])=E(nd2[k])E(nd[k])2=E(nd2[k])(因为这里 n d [ k ] n_d[k] nd[k]是均值为0的高斯分布,所以 E ( n d [ k ] ) = 0 \bm{E(n_d[k])=0} E(nd[k])=0方差=平方的期望-期望的平方),不好理解,内部展开就是下面项目的相乘
在这里插入图片描述

在这里插入图片描述
假设高斯白噪声是独立的, n ( τ ) n ( t ) n(\tau)n(t) n(τ)n(t)只有特定项(时间相差为1时)相乘才会有值,是狄拉克函数 δ ( t 1 − t 2 ) = 1 ( 当且仅当 t 1 − t 2 = 1 时 ) \delta(t_1-t_2)=1(当且仅当t_1-t_2=1时) δ(t1t2)=1(当且仅当t1t2=1)
右因为前面有:
在这里插入图片描述
t   Δ t t~\Delta t t Δt时间内只有一个时刻能使狄拉克函数为1,所以内层积分为1,外层积分为 ( t + Δ t ) − Δ t = Δ t (t+\Delta t)-\Delta t=\Delta t (t+Δt)Δt=Δt ,消掉分母即得协方差 σ 2 Δ t \frac{\sigma^2}{\Delta t} Δtσ2
同理,下面的协方差写法也是做了省略,省略过程见上。

在这里插入图片描述

在这里插入图片描述
看起来像是开方的, σ \sigma σ那一项相当于是服从一个 N ( 0 , 1 ) N(0,1) N(0,1)分布。

结论:bias随即游走噪声方差从连续到离散之间需要 ∗ Δ t *\sqrt{\Delta t} Δt 。(这个推导最后的开放有些看不懂,具体更详细的需要看论文
在这里插入图片描述

3.3.2 IMU随机误差的标定

主要是标定协方差,用于IMU选型,确定使用什么灵敏度类型的IMU
random walk noise的标定
在这里插入图片描述
艾伦方差的标定的论文:
在这里插入图片描述
斜率-0.5处,t=1时的值是高斯白噪声方差的大小,斜率0.5,t=3处值是bias random walk的方差的大小,具体为什么,需要去看论文。(功率谱,靶向量?)

数据仿真部分:
在这里插入图片描述(主要是标定Acc和Gyro的bias的random walk的方差,使用Kalibr_allan)

3.4 IMU数学模型

尺度因子如果标定的话会对精度有小幅提升(MSCKF什么黎明杨做的?VINS-MONO用过)
加计数学模型:加速度计的测量数据由尺度轴偏矩阵,重力分量,高斯白噪声,bias等构成。
在这里插入图片描述

陀螺仪数学模型:
下面这篇论文对MSCKF进行了非常详细的建模,如果有兴趣可以看。
在这里插入图片描述

4. 运动模型离散时间处理:欧拉法&中值法

如何使用这些数据获得pose:
这里需要强调,重力加速度 g w g^w gw前面的符号是跟坐标系定义有关的,如果是东北天,那就是-,如果是北东地就是+,整体上自洽即可。
在这里插入图片描述
基于导数,四元数导数的 ⊗ \bm{\otimes} 是四元数乘法,可以积分计算位置,速度,旋转:
在这里插入图片描述

欧拉法进行近似,假设在每个积分间隔内,被积函数值保持不变,即k~k+1时刻的积分使用k时刻的值:
在这里插入图片描述
关于四元数的更新:
q ω b k + 1 = q ω b k + q ′ Δ t = q ⊗ [ 1 0 ] + q ⊗ [ 0 1 2 ω Δ t ] ( q 提出来) = q ⊗ [ 1 1 2 ω Δ t ]

qωbk+1=qωbk+qΔt=q[10]+q[012ωΔt]q=q[112ωΔt]
qωbk+1q提出来)=qωbk+qΔt=q[10]+q[021ωΔt]=q[121ωΔt]

相较于欧拉法,中值法使用了k&k+1时刻的积分的均值,稍微准一点。
由于k->k+1时间较短,可以使用第k时刻的bias来矫正第k+1时刻的acc和gyro的值
在这里插入图片描述

5. IMU数据仿真

两种方式产生IMU仿真数据:

  1. 指定轨迹方程,求一阶导,二阶导得加速度等IMU仿真数据。
  2. 已有pose轨迹,但不知道方程,使用B-Spline产生IMU仿真数据。
    在这里插入图片描述
    在这里插入图片描述

由于四元数导数
在这里插入图片描述
所以四元数更新如上。
SO(3)更新也如上,更直观的方式是转换成欧拉角,需要将body系下的角速度转换为欧拉角速度。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
粗略的理解:
旋转顺序是固定的(先绕哪个轴,再绕哪个轴)
最后转的x轴,所以x轴的角速度就是 d ψ d t \frac{d\psi}{dt} dtdψ
绕y轴转完之后还要绕x轴转个 ψ \psi ψ,所以y轴的角速度要乘一个 R ( ψ ) R(\psi) R(ψ)
绕z轴转完之后还绕yx分别转了 θ \theta θ ψ \psi ψ,所以z方向的角速度要多乘个 R ( ψ ) R ( θ ) R(\psi)R(\theta) R(ψ)R(θ)

所以就得到了Inertial->body系下的角速度转换矩阵,求逆就得从body->Inernial下的转换。

在这里插入图片描述

6. 作业

在这里插入图片描述

Reference

1. MSCKF详细建模推导(国外硕士论文)

在这里插入图片描述

2. Allan方差曲线论文

在这里插入图片描述

3. 离散和连续的IMU随机误差方差推导

在这里插入图片描述

4. 6面法标定误差(自己之前看过abstract的)

2014 ICRA:A Robust and Easy to Implement Method for IMU Calibration without
External Equipments

5. IMU数据仿真时IMU body系下的角速度转化为欧拉角速度课件

在这里插入图片描述

6. 利用B Spline(B样条)和已有IMU数据你拟合方程,产生IMU数据

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/118210
推荐阅读
相关标签
  

闽ICP备14008679号