赞
踩
由于号称Yolov5_DeepSort_Pytorch之github官网(mikel-brostrom)改版,加入了多种reid,以前版本的reid模型ckpt.t7(由ZQPei提供)不能直接使用。以下记录如何在mikel-brostrom新版中使用osnet reid模型,以及使用ZQPei ckpt.t7模型的方法。
经验证,新版Yolov5_DeepSort_Pytorch,用osnet_x1_0, osnet_ain_x1_0均可运行,性能和ZQPei模型差不多,但速度慢。大约40ms vs 20ms/帧的差别。可能的原因,osnet 模型选择resize下所匹配图像大,256x128(h,w), ZQPei ckpt模型resize图像小128x64(h,w)。当然,osnet模型若选小尺寸resize,速度也会加快。
尝试将ZQPei模型写成新版适用的reid方式。
mikel-brostrom引入KaiyangZhou提供的reid,其使用方法如下。
如何导入torchreid:
将KaiyangZhou github克隆下来,放到Yolov5_DeepSort_Pytorch/deep_sort/deep目录下,目录名为改reid,即Yolov5_DeepSort_Pytorch/deep_sort/deep/reid。
假定已经安装了conda和虚拟环境,且安装好Yolov5_DeepSort_Pytorch所需的模块,进入reid目录,运行
python setup.py develop
如此,即安装好torchreid,可以在程序中加入import torchreid。
从KaiyangZhou的github中,Model zoo里下载权重文件,例如osnet_x1_0.pth,放到checkpoint目录:Yolov5_DeepSort_Pytorch/deep_sort/deep/checkpoint。
(1)修改deep_sort.yaml
DEEPSORT:
MODEL_TYPE: "osnet_x1_0" # "ZQP"
REID_CKPT: '~/Yolov5_DeepSort_Pytorch/deep_sort/deep/checkpoint/osnet_x1_0_imagenet.pth'
# REID_CKPT: '~/Yolov5_DeepSort_Pytorch/deep_sort/deep/checkpoint/ckpt.t7'
MAX_DIST: 0.1 # 0.2 The matching threshold. Samples with larger distance are considered an invalid match
MAX_IOU_DISTANCE: 0.7 # 0.7 Gating threshold. Associations with cost larger than this value are disregarded.
MAX_AGE: 90 # 30 Maximum number of missed misses before a track is deleted
N_INIT: 3 # 3 Number of frames that a track remains in initialization phase
NN_BUDGET: 100 # 100 Maximum size of the appearance descriptors gallery
MIN_CONFIDENCE: 0.75
NMS_MAX_OVERLAP: 1.0
(2)track.py中指定reid模型,添加checkpoint路径。
parser.add_argument('--deep_sort_model', type=str, default='osnet_x1_0')
#parser.add_argument('--deep_sort_model', type=str, default='ZQP')
deepsort = DeepSort(deep_sort_model,
cfg.DEEPSORT.REID_CKPT, # 添加checkpoint路径
device,
max_dist=cfg.DEEPSORT.MAX_DIST,
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
)
在deep_sort.yaml文件中给出权重文件路径,可跳过从网上下载权重的过程,直接从本地下载。
如此可运行osnet reid之deepsort跟踪程序track.py。
注:上述修改中,加注释#的部分是采用ZQPei模型。
将ZQPei模型添加到reid中的办法: 模型名称:ZQP, 模型文件名:model_ZQP.py
(3)修改ZQPei github代码中 model.py,
(a)在py文件中添加函数
def ZQP(num_classes=751, pretrained=True, loss='softmax', **kwargs):
model = Net(
num_classes=num_classes,
pretrained = pretrained,
loss = 'softmax',
**kwargs
)
return model
(b)取消原来的 reid 参数,模型输出项判断更改为self.training
def forward(self, x):
x = self.conv(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
#x = self.avgpool(x)
x = self.adaptiveavgpool(x) #此处将avgpool(x)改成adaptiveavgpool(x)适应不同的resize
x = x.view(x.size(0),-1)
if not self.training: # 原 self.reid 参数改成self.training
x = x.div(x.norm(p=2,dim=1,keepdim=True)) # x 归一化
return x
# classifier
x = self.classifier(x)
return x
为避免名称发生冲突,将原来的model.py改成model_ZQP.py。
(4)在deep_sort/deep/reid/torchreid/models/__init__.py
中添加:
from .model_ZQP import *
在字典__model_factory中添加自己的模型:
__model_factory = {
# image classification models
'resnet18': resnet18,
'resnet34': resnet34,
'resnet50': resnet50,
......
'ZQP': ZQP
(5)在deep_sort/deep/reid/torchreid/utils/feature_extractor.py中添加模型文件
from deep_sort.deep.reid.torchreid.models.model_ZQP import Net
其中的__init__函数中修改image_size, num_classes:
def __init__( self, model_name='', model_path='', image_size=(128, 64), #(256, 128) pixel_mean=[0.485, 0.456, 0.406], pixel_std=[0.229, 0.224, 0.225], pixel_norm=True, device='cuda', verbose=True ): # Build model model = build_model( model_name, num_classes=751, # 注意此处修改为market1501的分类数 pretrained=True, use_gpu=device.startswith('cuda') )
(6)此外,由于ckpt.t7中的state_dict名称为net_dict,与常规的不一致,需要修改:
修改deep_sort/deep/reid/torchreid/utils/torchtools.py
checkpoint = load_checkpoint(weight_path)
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
elif 'net_dict' in checkpoint: # 更改,将模型中的net_dict改名为state_dict
state_dict = checkpoint['net_dict'] # 更改处。
else:
state_dict = checkpoint
现在可以运行ZQPei模型ckpt.t7,变更处太多,但可以保持与其他的reid兼容使用feature_extractor.py。
或者直接改feature_extractor.py如下,但只能适用于ckpt.t7,其他的reid都不能用:
from __future__ import absolute_import import numpy as np import torch import torchvision.transforms as T from PIL import Image import cv2 from torchreid.utils import ( check_isfile, load_pretrained_weights, compute_model_complexity ) from torchreid.models import build_model import logging from deep_sort.deep.reid.torchreid.models.model_ZQP import Net class FeatureExtractor(object): def __init__( self, model_name='', model_path='', image_size=(64, 128), # 256, 128 w, h pixel_mean=[0.485, 0.456, 0.406], pixel_std=[0.229, 0.224, 0.225], pixel_norm=True, device='cuda' ): self.net = Net(pretrained =True) if model_path and check_isfile(model_path): self.device = "cuda" if torch.cuda.is_available() else "cpu" state_dict = torch.load(model_path, map_location=torch.device(self.device))['net_dict'] self.net.load_state_dict(state_dict) self.net.eval() self.size = (64,128) # self.size = (64,128) , self.size(width, height) import torchvision.transforms as transforms self.norm = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) device = torch.device(device) self.net.to(device) def _preprocess(self, im_crops): def _resize(im, size): return cv2.resize(im.astype(np.float32)/255., size) im_batch = torch.cat([self.norm(_resize(im, self.size)).unsqueeze( 0) for im in im_crops], dim=0).float() return im_batch def __call__(self, im_crops): im_batch = self._preprocess(im_crops) with torch.no_grad(): im_batch = im_batch.to(self.device) features = self.net(im_batch) return features # .cpu().numpy()
总结
兼容方式
(1)修改deep_sort.yaml,指定权重文件路径,模型名称。
(2)track.py命令行变更reid模型名称。
(3)model_ZQP.py修改
(4)__init__.py
添加模型名称ZQP
(5)feature_extractor.py修改image_size, num_classes,添加import reid
(6)torchtools.py调整模型net_dict为state_dict
非兼容方式
(1)修改deep_sort.yaml,指定权重文件路径,模型名称。
(2)track.py命令行变更reid模型名称。
(3)model_ZQP.py修改
(4)__init__.py
添加模型名称ZQP
(5)替换feature_extractor.py
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。