赞
踩
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import mne
%matplotlib qt
在使用MNE进行EEG信号的可视化操作时,往往需要导入对应电极的位置信息,MNE中有内置的常见电极布局系统,通过调用下面指令进行导入:
mne.channels.get_builtin_montages() # output: ['standard_1005', 'standard_1020', 'standard_alphabetic', 'standard_postfixed', 'standard_prefixed', 'standard_primed', 'biosemi16', 'biosemi32', 'biosemi64', 'biosemi128', 'biosemi160', 'biosemi256', 'easycap-M1', 'easycap-M10', 'EGI_256', 'GSN-HydroCel-32', 'GSN-HydroCel-64_1.0', 'GSN-HydroCel-65_1.0', 'GSN-HydroCel-128', 'GSN-HydroCel-129', 'GSN-HydroCel-256', 'GSN-HydroCel-257', 'mgh60', 'mgh70', 'artinis-octamon', 'artinis-brite23', 'brainproducts-RNP-BA-128']
从上面的输出可以看出,MNE中共有27个可用的电极布局系统,具体选择哪一个要看你采集数据时使用的脑电帽电极布局系统是哪个。
int32_montage = mne.channels.make_standard_montage('biosemi32')
int32_montage.plot()
plt.show()
weight = {'Fp1': 0.31, 'AF3': -0.26, 'F7': 1.22, 'F3': 0.99, 'Fz': 0.71, 'FC5': 0.55, 'FC1': -1.19, 'T7': 0.61, 'C3': -0.80, 'Cz': 2.36, 'CP5': -0.74, 'CP1': 0.72, 'P7': 0.93, 'P3': 0.38, 'Pz': 1.07, 'PO3': -1.46, 'O1': -0.12, 'Oz': 1.074, 'Fp2': 1.04, 'AF4': -0.065, 'F4': -0.52, 'F8': 0.37, 'FC2': 1.30, 'FC6': 0.94, 'C4': -1.11, 'T8': -0.16, 'CP2': 1.82, 'CP6': 0.41, 'P4': 0.46, 'P8': 0.99, 'PO4':0.15, 'O2':0.23}
# 查看脑地形图矩阵导联位置
sensor_data_32 = int32_montage.get_positions()['ch_pos']
sensor_dataframe_32 = pd.DataFrame(sensor_data_32).T
chLa_index = sensor_dataframe_32.index.values
print(chLa_index)
# 重构自定义矩阵顺序
reWeight = []
for key in chLa_index:
val = weight[key]
reWeight.append(val)
info = mne.create_info(
ch_names = chLa_index,
ch_types = ['eeg']*32, # 通道个数
sfreq = 1000) # 采样频率
info.set_montage(int32_montage)
im, cn = mne.viz.plot_topomap(reWeight,
info,
names = chLa_index.tolist(),
# vlim=(-2, 2)
)
plt.colorbar(im)
plt.show()
假设我有一个64导联的帽子,根据实验需求,实验过程中我只选择中央区和顶叶区域的电极。
那么我们该如何根据自己选择的导联制定通道定位模版呢?
这里有两种方法:
第一种:自定义新的电极布局文件,文件只包含实验选择的导联。这个方法的目的是教会你如何制作自己的电极布局文件,实际绘制时建议选择第二种方法。
第二种:使用原来的电极布局文件,先对矩阵进行归一化,后将未被选择的导联值置为0
# 读取MNE中biosemi64电极位置信息
biosemi_montage = mne.channels.make_standard_montage('biosemi64')
sensor_data_64 = biosemi_montage.get_positions()['ch_pos']
sensor_dataframe_64 = pd.DataFrame(sensor_data_64).T
sensor_dataframe_64.to_excel('sensor_dataframe_64.xlsx')
# 模仿下载的电极布局excel,自定义电极布局文件
myStardart = pd.read_excel('mySensor_dataframe.xlsx', index_col=0) # 读取自己的电极定位文件
ch_names = np.array(myStardart.index) # 电极名称
position = np.array(myStardart) # 电极坐标位置
sensorPosition = dict(zip(ch_names, position)) # 制定为字典的形式
myMontage = mne.channels.make_dig_montage(ch_pos=sensorPosition)
myMontage.plot()
plt.show()
myWeight = {'C1': 0.31, 'C3': 1.22, 'P6': 0.71, 'P4': 0.55,'P2': -1.19, 'CP5': 0.61,
'CP3': -0.80, 'CP1': 2.36, 'P1': -0.74, 'P3': 0.72,'P5': 0.93, 'Pz': -1.46,
'CPz': -0.12, 'Cz': 1.074,'C5':2.34,'C2': 1.04, 'C4': -0.065, 'C6': -0.52,
'CP2': 0.37, 'CP4': 1.30, 'CP6': 0.94}
# 查看脑地形图矩阵导联位置
my_chLa_index = ch_names.tolist()
print('脑地形图矩阵导联顺序:',my_chLa_index)
# 重构自定义矩阵顺序
reMyWeight = []
for key in my_chLa_index:
val = myWeight[key]
reMyWeight.append(val)
myinfo = mne.create_info(
ch_names = my_chLa_index,
ch_types = ['eeg']*21, # 通道个数
sfreq = 1000) # 采样频率
myinfo.set_montage(myMontage)
im, cn = mne.viz.plot_topomap(reMyWeight,
myinfo,
names = my_chLa_index,
# vlim=(-2, 2)
)
plt.colorbar(im)
plt.title('My Montage')
plt.show()
# 读取MNE中biosemi64电极位置信息
biosemi_montage = mne.channels.make_standard_montage('biosemi64')
sensor_data_64 = biosemi_montage.get_positions()['ch_pos']
sensor_dataframe_64 = pd.DataFrame(sensor_data_64).T
chLa_index_64 = sensor_dataframe_64.index.values
biosemi_montage.plot()
plt.show()
myWeight = {'C1': 0.31, 'C3': 1.22, 'P6': 0.71, 'P4': 0.55,'P2': -1.19, 'CP5': 0.61,
'CP3': -0.80, 'CP1': 2.36, 'P1': -0.74, 'P3': 0.72,'P5': 0.93, 'Pz': -1.46,
'CPz': -0.12, 'Cz': 1.074,'C5':2.34,'C2': 1.04, 'C4': -0.065, 'C6': -0.52,
'CP2': 0.37, 'CP4': 1.30, 'CP6': 0.94}
norMyWeiht = myWeight.copy()
# Step 1: 获取需要归一化的值
values = [v for v in norMyWeiht.values()]
# Step 2: 找到最小值和最大值
min_value = min(values)
max_value = max(values)
# Step 3: 对值进行归一化计算
for key, value in norMyWeiht.items():
normalized_value = (value - min_value) / (max_value - min_value)
norMyWeiht[key] = normalized_value
print('脑地形图矩阵导联顺序:',chLa_index_64)
# 重构自定义矩阵顺序
reNorMyWeight = []
for key in chLa_index_64:
if key in norMyWeiht:
val = norMyWeiht[key]
reNorMyWeight.append(val)
else:
reNorMyWeight.append(0)
info = mne.create_info(
ch_names = chLa_index_64.tolist(),
ch_types = ['eeg']*len(reNorMyWeight), # 通道个数
sfreq = 1000) # 采样频率
info.set_montage(biosemi_montage)
im, cn = mne.viz.plot_topomap(reNorMyWeight,
info,
names = chLa_index_64,
cmap = 'jet'
# vlim=(-2, 2)
)
plt.colorbar(im)
plt.title('My Montage')
plt.show()
在加载python库的时候,我添加了:%matplotlib qt 嵌入Python Qt界面
所以出来的图可能是这样的:
需要点击放大:
https://weisihong9.github.io/2023/07/03/EEG_TopoMap/
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。