赞
踩
下面的数据集,主要是学术界使用的,工业界使用的数据集一般不公开下载不到。
1.CIFAR-10
CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像。
数据集分为五个训练批次和一个测试批次,每个批次有10000个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。训练批次以随机顺序包含剩余图像,但一些训练批次可能包含来自一个类别的图像比另一个更多。总体来说,五个训练集之和包含来自每个类的正好5000张图像。
以下是数据集中的类,以及来自每个类的10个随机图像:
下载地址:
http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
2.CIFAR-100:
这个数据集就像CIFAR-10,除了它有100个类,每个类包含600个图像。,每类各有500个训练图像和100个测试图像。CIFAR-100中的100个类被分成20个超类。每个图像都带有一个“精细”标签(它所属的类)和一个“粗糙”标签(它所属的超类)
下载地址:
http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz
3.MNIST:
MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据.
MNIST 数据集可在 http://yann.lecun.com/exdb/mnist/ 获取, 它包含了四个部分:
Training set images: train-images-idx3-ubyte.gz (9.9 MB, 解压后 47 MB, 包含 60,000 个样本)
Training set labels: train-labels-idx1-ubyte.gz (29 KB, 解压后 60 KB, 包含 60,000 个标签)
Test set images: t10k-images-idx3-ubyte.gz (1.6 MB, 解压后 7.8 MB, 包含 10,000 个样本)
Test set labels: t10k-labels-idx1-ubyte.gz (5KB, 解压后 10 KB, 包含 10,000 个标签)
4.SVHN:
SVHN数据集是斯坦福大学开发出来的,包含train文件接,test文件夹以及extra文件夹。分别包含33402、13068、202353个标记图片。
5.Caltech :
Caltech数据集主要包括2类,一类是Caltech-101;另一类是Caltech-256。
Caltech-101
这个数据集包含了101类的图像,每类大约有40~800张图像,大部分是50张/类;
在2003年由lifeifei收集,每张图像的大小大约是300x200。
Caltech-256
此数据集和Caltech-101相似,包含了30,607张图像。
下载地址:
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/datasets/USA/
6.Imagenet
Imagenet数据集有1400多万幅图片,涵盖2万多个类别;其中有超过百万的图片有明确的类别标注和图像中物体位置的标注,具体信息如下: 1)Total number of non-empty synsets: 21841 2)Total number of images: 14,197,122 3)Number of images with bounding box annotations: 1,034,908 4)Number of synsets with SIFT features: 1000 5)Number of images with SIFT features: 1.2 million
Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据集展开。Imagenet数据集文档详细,有专门的团队维护,使用非常方便,在计算机视觉领域研究论文中应用非常广,几乎成为了目前深度学习图像领域算法性能检验的“标准”数据集。
迅雷打开
验证集
http://academictorrents.com/download/5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5.torrent
训练集
http://academictorrents.com/download/a306397ccf9c2ead27155983c254227c0fd938e2.torrent
https://blog.csdn.net/weixin_41043240/article/details/80305311
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。