赞
踩
其学习形式主要分为:有监督学习、无监督学习、半监督学习
有监督学习(supervised learning),需要你事先需要准备好要输入数据(训练样本)与真实的输出结果(参考答案)
比如有监督学习可以划分为:回归问题和分类问题
如果预测结果是离散的,通常为分类问题,而为连续的,则是回归问题。
1)拟合:形象地说,“拟合”就是把平面坐标系中一系列散落的点,用一条光滑的曲线连接起来,因此拟合也被称为“曲线拟合”。
2) 过拟合:过拟合(overfitting)与是机器学习模型训练过程中经常遇到的问题,所谓过拟合,通俗来讲就是模型的泛化能力较差,也就是过拟合的模型在训练样本中表现优越,但是在验证数据以及测试数据集中表现不佳。过拟合问题在机器学习中经常遇到,主要是因为训练时样本过少,特征值过多导致的,后续还会详细介绍。
3) 欠拟合:欠拟合(underfitting)恰好与过拟合相反,它指的是“曲线”不能很好的“拟合”数据。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。