当前位置:   article > 正文

RAG 详解_retrieve-and-sample: document-level event argument

retrieve-and-sample: document-level event argument extraction via hybrid ret

原文:GitHub - Tongji-KGLLM/RAG-Survey

目录

什么是RAG?

大型语言模型 (LLM) 已成为我们生活和工作不可或缺的一部分,通过其惊人的多功能性和智能性改变了我们与信息交互的方式。

尽管它们的能力令人印象深刻,但它们并非没有缺陷。这些模型会产生误导性的“幻觉”,依赖可能过时的信息,在处理特定知识时效率低下,在专业领域缺乏深度,并且在推理能力方面不足。

在实际应用中,数据需要不断更新以反映最新发展,并且生成的内容必须透明且可追溯,以管理成本并保护数据隐私。因此,仅仅依靠这些“黑匣子”模型是不够的;我们需要更精细的解决方案来满足这些复杂的需求。

在这种背景下,检索增强生成(RAG)作为人工智能时代的开创性趋势而声名鹊起。

RAG在问答中的典型应用。(例如,向 chatGPT 询问 OpenAI 首席执行官 SAM Altman

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/513620
推荐阅读
相关标签