赞
踩
人工智能应用:计算机科学、金融、医院和医药、重工业、顾客服务。1、计算机科学人工智能(AI)产生了许多方法解决计算机科学最困难的问题。它们的许多发明已被主流计算机科学采用,而不认为是AI的一部分。
2、金融银行用人工智能系统组织运作,金融投资和管理财产。2001年8月在模拟金融贸易竞赛中机器人战胜了人。
金融机构已长久用人工神经网络系统去发觉变化或规范外的要求,银行使用协助顾客服务系统;帮助核对账目,发行信用卡和恢复密码等。3、医院和医药医学临床可用人工智能系统组织病床计划;并提供医学信息。
人工神经网络用来做临床诊断决策支持系统。用人工智能在医学方面还有下列潜在可能:计算机帮助解析医学图像。这样系统帮助扫描数据图像,从计算X光断层图发现疾病,典型应用是发现肿块。
4、重工业在工业中已普遍应用机器人。它们常做对人是危险的工作。全世界日本是利用和生产机器人的先进国;1999年世界范围使用1,700,000台机器人。
5、顾客服务人工智能是自动上线的好助手,可减少操作,使用的主要是自然语言加工系统。呼叫中心的回答机器也用类似技术,如语言识别软件可使计算机的顾客较好操作。
谷歌人工智能写作项目:神经网络伪原创
我想这可能是你想要的神经网络吧!
什么是神经网络:人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型写作猫。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络的应用:应用在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。
主要的研究工作集中在以下几个方面:生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。
机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。
人工智能就其本质而言,是对人的思维和信息过程的模拟。
对于人的思维模拟可以从两条途径进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。
现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。图奕具有专业的网络科技相关技术。
目前,公司拥有近百人的软件研发团队,遵循行业技术、管理及安全标准,团队人员配备完整公司研发方向包含了传统互联网、移动互联网、物联网、空间地理信息、音视频处理、大数据分析及应用服务、分布式计算、分布式存储,自动化发布、自动化部署、自动化测试、持续集成、智能化运维、智能客服、智能推荐等方面,公司长期以科技创新为核心驱动力,与国内众多知名软件企业形成战略合作关系,软件产品研发能力已成为全省软件企业前列。
人工智能,也被称为AI。研究和开发模拟、扩展和扩展人类智能的理论、方法、技术和应用系统是一门新兴的技术科学。
人工智能是计算机科学的一个分支,它试图理解智能的本质,并产生一种新的智能机器,它可以像人类智能一样做出反应。该领域的研究包括机器人技术、语言识别、图像识别、自然语言处理和专家系统。
01.医学领域医疗诊断可以使用人工智能系统来组织病床计划;并提供医疗信息。将人工神经网络应用于临床诊断决策支持系统。人工智能在医学上还有以下潜在的用途:计算机帮助解释医学图像。
这种系统可以通过扫描数据图像来检测计算机断层扫描的疾病,而计算机断层扫描通常用于发现肿块。心音分析。02.金融银行使用人工智能系统来组织运营、融资投资和管理资产。
2001年8月,机器人在一场模拟金融交易竞赛中击败了人类。长期以来,金融机构一直使用人工神经网络来检测变化或非监管要求,银行也一直使用客户协助系统;帮助检查帐户,发行信用卡和恢复密码。
03.服务行业人工智能是自动上网的好助手,可以减少操作,主要使用的是自然语言处理系统。类似的技术,如语言识别软件,也被用于呼叫中心的应答机,以使计算机用户更容易操作。
也有的餐厅安装了人工智能系统,顾客可以自己点餐。最近听说阿里巴巴有一全智能的酒店,全程都是机器人工作,机器人可以自己开电梯,做饭,满足客户的要求。大家有在生活中发现什么有趣的人工智能应用吗?
一.一些基本常识和原理[什么叫神经网络?]人的思维有逻辑性和直观性两种不同的基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。
然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。
这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。人工神经网络就是模拟人思维的第二种方式。
这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
[人工神经网络的工作原理]人工神经网络首先要以一定的学习准则进行学习,然后才能工作。
现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。
首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。
在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。
如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。
这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。
一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
=================================================关于一个神经网络模拟程序的下载人工神经网络实验系统(BP网络)V1.0Beta作者:沈琦作者关于此程序的说明:从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值0.515974。
而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果P*Out1:0.520051看到了吗?"大脑"识别出了4和11是属于第二类的!
怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别!=================================================人工神经网络论坛(旧版,枫舞推荐)国际神经网络学会(INNS)(英文)欧洲神经网络学会(ENNS)(英文)亚太神经网络学会(APNNA)(英文)日本神经网络学会(JNNS)(日文)国际电气工程师协会神经网络分会研学论坛神经网络;sty=1&age=0人工智能研究者俱乐部2nsoft人工神经网络中文站=================================================推荐部分书籍:人工神经网络技术入门讲稿(PDF)神经网络FAQ(英文)数字神经网络系统(电子图书)神经网络导论(英文)===============================================一份很有参考价值的讲座是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存.=========================================================已经努力的在给你提供条件资源哦~~。
人工神经网络(ArtificialNeuralNetwork,简称ANN),以数学模型模拟神经元活动,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。
人工神经网络具有自学习、自组织、自适应以及很强的非线性函数逼近能力,拥有强大的容错性。它可以实现仿真、预测以及模糊控制等功能。是处理非线性系统的有力工具。
它是物流合作伙伴选择方法中合作伙伴选择的神经网络算法的另一种名称。
它是20世界80年代后迅速发展的一门新兴学科,ANN可以模拟人脑的某些智能行为,如知觉,灵感和形象思维等,具有自学性,自适应和非线性动态处理等特征。
将ANN应用于供应链管理(SCM)环境下合作合办的综合评价选择,意在建立更加接近于人类思维模式的定性与定量相结合的综合评价选择模型。
通过对给定样本模式的学习,获取评价专家的知识,经验,主管判断及对目标重要性的倾向,当对合作伙伴作出综合评价时,该方法可再现评价专家的经验,知识和直觉思维,从而实现了定性分析与定量分析的有效结合,也可以较好的保证合作伙伴综合评价结果的客观性。
在选定评价指标组合的基础上,对评价指标作出评价,得到评价值后,因各指标间没有统一的度量标准,难以进行直接的分析和比较,也不利于输入神经网络计算。
因此,在用神经网络进行综合评价之前,应首先将输入的评价值通过隶属函数的作用转换为(0,1]之间的值,即对评价值进行标准无纲量化,并作为神经网络的输入,以使ANN可以处理定量和定性指标。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。