当前位置:   article > 正文

PyTorch搭建ResNet模型(在CIFAR10数据集上准确率达到了90%)_pointnet pytorch复现准确率高于90

pointnet pytorch复现准确率高于90

PyTorch搭建ResNet模型

https://zhuanlan.zhihu.com/p/101332297

为了减少时间成本,本文只复现了ResNet-18模型,诸如ResNet-34、ResNet-50、ResNet-101、ResNet-152等更深层的神经网络模型,可以在ResNet-18的基础上修改而来。ResNet由于在顺序结构神经网络中引入了残差块(Residual Block),因此得名Residual Networks(ResNet)。

Residual Block


ResNet-18与ResNet-50


ResNet-34

# import packages
import torch
import torchvision
  • 1
  • 2
  • 3
# Device configuration.
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  • 1
  • 2
# Transform configuration and data augmentation.
transform_train = torchvision.transforms.Compose([torchvision.transforms.Pad(4),
                                                 torchvision.transforms.RandomHorizontalFlip(),
                                                 torchvision.transforms.RandomCrop(32),
                                                 torchvision.transforms.ToTensor(),
                                                 torchvision.transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
transform_test = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
                                                torchvision.transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
# Hyper-parameters
num_classes = 10
batch_size = 100
learning_rate = 0.001
num_epochs = 80
  • 1
  • 2
  • 3
  • 4
  • 5
# Load downloaded dataset.
train_dataset = torchvision.datasets.CIFAR10('data/CIFAR/', download=False, train=True, transform=transform_train)
test_dataset = torchvision.datasets.CIFAR10('data/CIFAR/', download=False, train=False, transform=transform_test)
  • 1
  • 2
  • 3
# Data Loader.
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
  • 1
  • 2
  • 3
# Define 3x3 convolution.
def conv3x3(in_channels, out_channels, stride=1):
    return torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
  • 1
  • 2
  • 3
# Define Residual block
class ResidualBlock(torch.nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.bn1 = torch.nn.BatchNorm2d(out_channels)
        self.relu = torch.nn.ReLU(inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.bn2 = torch.nn.BatchNorm2d(out_channels)
        self.downsample = downsample
        
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample :
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
# Define ResNet-18
class ResNet(torch.nn.Module):
    def __init__(self, block, layers, num_classes):
        super(ResNet, self).__init__()
        self.in_channels = 16
        self.conv = conv3x3(3, 16)
        self.bn = torch.nn.BatchNorm2d(16)
        self.relu = torch.nn.ReLU(inplace=True)
        self.layer1 = self._make_layers(block, 16, layers[0])
        self.layer2 = self._make_layers(block, 32, layers[1], 2)
        self.layer3 = self._make_layers(block, 64, layers[2], 2)
        self.layer4 = self._make_layers(block, 128, layers[3], 2)
        self.avg_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
        self.fc = torch.nn.Linear(128, num_classes)
        
    def _make_layers(self, block, out_channels, blocks, stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = torch.nn.Sequential(
                conv3x3(self.in_channels, out_channels, stride=stride),
                torch.nn.BatchNorm2d(out_channels))
        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels
        for i in range(1, blocks):
            layers.append(block(out_channels, out_channels))
        return torch.nn.Sequential(*layers)
    
    def forward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
# Make model.
model = ResNet(ResidualBlock, [2, 2, 2, 2], num_classes).to(device)
  • 1
  • 2
# Loss ans optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
  • 1
  • 2
  • 3
# For updating learning rate.
def update_lr(optimizer, lr):
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr
  • 1
  • 2
  • 3
  • 4
# Train the model.
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # Forward pass.
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
    # Decay learning rate.
    if (epoch+1) % 20 == 0:
        curr_lr /= 3
        update_lr(optimizer, curr_lr)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
Epoch [1/80], Step [100/500], Loss: 1.6278
Epoch [1/80], Step [200/500], Loss: 1.3368
Epoch [1/80], Step [300/500], Loss: 1.3774
Epoch [1/80], Step [400/500], Loss: 1.2487
Epoch [1/80], Step [500/500], Loss: 1.0083
Epoch [2/80], Step [100/500], Loss: 1.1344
Epoch [2/80], Step [200/500], Loss: 0.8391
Epoch [2/80], Step [300/500], Loss: 1.1451
Epoch [2/80], Step [400/500], Loss: 1.1581
Epoch [2/80], Step [500/500], Loss: 1.0138
Epoch [3/80], Step [100/500], Loss: 0.8204
Epoch [3/80], Step [200/500], Loss: 0.9306
Epoch [3/80], Step [300/500], Loss: 0.6666
Epoch [3/80], Step [400/500], Loss: 0.9254
Epoch [3/80], Step [500/500], Loss: 0.7068
Epoch [4/80], Step [100/500], Loss: 0.7309
Epoch [4/80], Step [200/500], Loss: 0.6603
Epoch [4/80], Step [300/500], Loss: 0.5715
Epoch [4/80], Step [400/500], Loss: 0.6693
Epoch [4/80], Step [500/500], Loss: 0.6240
Epoch [5/80], Step [100/500], Loss: 0.6171
Epoch [5/80], Step [200/500], Loss: 0.7757
Epoch [5/80], Step [300/500], Loss: 0.5394
Epoch [5/80], Step [400/500], Loss: 0.4437
Epoch [5/80], Step [500/500], Loss: 0.5371
Epoch [6/80], Step [100/500], Loss: 0.5737
Epoch [6/80], Step [200/500], Loss: 0.7505
Epoch [6/80], Step [300/500], Loss: 0.4102
Epoch [6/80], Step [400/500], Loss: 0.3542
Epoch [6/80], Step [500/500], Loss: 0.5393
Epoch [7/80], Step [100/500], Loss: 0.4987
Epoch [7/80], Step [200/500], Loss: 0.4006
Epoch [7/80], Step [300/500], Loss: 0.4238
Epoch [7/80], Step [400/500], Loss: 0.4722
Epoch [7/80], Step [500/500], Loss: 0.4706
Epoch [8/80], Step [100/500], Loss: 0.5829
Epoch [8/80], Step [200/500], Loss: 0.5226
Epoch [8/80], Step [300/500], Loss: 0.4381
Epoch [8/80], Step [400/500], Loss: 0.4344
Epoch [8/80], Step [500/500], Loss: 0.4641
Epoch [9/80], Step [100/500], Loss: 0.5033
Epoch [9/80], Step [200/500], Loss: 0.4500
Epoch [9/80], Step [300/500], Loss: 0.4019
Epoch [9/80], Step [400/500], Loss: 0.4249
Epoch [9/80], Step [500/500], Loss: 0.5130
Epoch [10/80], Step [100/500], Loss: 0.4057
Epoch [10/80], Step [200/500], Loss: 0.4189
Epoch [10/80], Step [300/500], Loss: 0.4459
Epoch [10/80], Step [400/500], Loss: 0.4157
Epoch [10/80], Step [500/500], Loss: 0.3352
Epoch [11/80], Step [100/500], Loss: 0.4696
Epoch [11/80], Step [200/500], Loss: 0.3871
Epoch [11/80], Step [300/500], Loss: 0.3810
Epoch [11/80], Step [400/500], Loss: 0.4613
Epoch [11/80], Step [500/500], Loss: 0.3651
Epoch [12/80], Step [100/500], Loss: 0.3487
Epoch [12/80], Step [200/500], Loss: 0.3225
Epoch [12/80], Step [300/500], Loss: 0.3127
Epoch [12/80], Step [400/500], Loss: 0.4051
Epoch [12/80], Step [500/500], Loss: 0.3588
Epoch [13/80], Step [100/500], Loss: 0.5568
Epoch [13/80], Step [200/500], Loss: 0.3759
Epoch [13/80], Step [300/500], Loss: 0.2941
Epoch [13/80], Step [400/500], Loss: 0.5200
Epoch [13/80], Step [500/500], Loss: 0.3995
Epoch [14/80], Step [100/500], Loss: 0.4985
Epoch [14/80], Step [200/500], Loss: 0.4564
Epoch [14/80], Step [300/500], Loss: 0.2351
Epoch [14/80], Step [400/500], Loss: 0.4535
Epoch [14/80], Step [500/500], Loss: 0.5108
Epoch [15/80], Step [100/500], Loss: 0.3881
Epoch [15/80], Step [200/500], Loss: 0.4429
Epoch [15/80], Step [300/500], Loss: 0.2841
Epoch [15/80], Step [400/500], Loss: 0.4210
Epoch [15/80], Step [500/500], Loss: 0.2653
Epoch [16/80], Step [100/500], Loss: 0.4307
Epoch [16/80], Step [200/500], Loss: 0.2401
Epoch [16/80], Step [300/500], Loss: 0.1996
Epoch [16/80], Step [400/500], Loss: 0.2240
Epoch [16/80], Step [500/500], Loss: 0.2821
Epoch [17/80], Step [100/500], Loss: 0.2849
Epoch [17/80], Step [200/500], Loss: 0.2965
Epoch [17/80], Step [300/500], Loss: 0.3777
Epoch [17/80], Step [400/500], Loss: 0.4469
Epoch [17/80], Step [500/500], Loss: 0.2752
Epoch [18/80], Step [100/500], Loss: 0.2665
Epoch [18/80], Step [200/500], Loss: 0.3726
Epoch [18/80], Step [300/500], Loss: 0.1999
Epoch [18/80], Step [400/500], Loss: 0.2555
Epoch [18/80], Step [500/500], Loss: 0.2895
Epoch [19/80], Step [100/500], Loss: 0.1635
Epoch [19/80], Step [200/500], Loss: 0.1796
Epoch [19/80], Step [300/500], Loss: 0.4037
Epoch [19/80], Step [400/500], Loss: 0.2623
Epoch [19/80], Step [500/500], Loss: 0.1818
Epoch [20/80], Step [100/500], Loss: 0.2265
Epoch [20/80], Step [200/500], Loss: 0.4131
Epoch [20/80], Step [300/500], Loss: 0.2777
Epoch [20/80], Step [400/500], Loss: 0.3146
Epoch [20/80], Step [500/500], Loss: 0.3028
Epoch [21/80], Step [100/500], Loss: 0.3265
Epoch [21/80], Step [200/500], Loss: 0.2229
Epoch [21/80], Step [300/500], Loss: 0.2388
Epoch [21/80], Step [400/500], Loss: 0.2601
Epoch [21/80], Step [500/500], Loss: 0.1227
Epoch [22/80], Step [100/500], Loss: 0.2175
Epoch [22/80], Step [200/500], Loss: 0.2641
Epoch [22/80], Step [300/500], Loss: 0.1847
Epoch [22/80], Step [400/500], Loss: 0.1926
Epoch [22/80], Step [500/500], Loss: 0.2075
Epoch [23/80], Step [100/500], Loss: 0.1859
Epoch [23/80], Step [200/500], Loss: 0.1570
Epoch [23/80], Step [300/500], Loss: 0.2750
Epoch [23/80], Step [400/500], Loss: 0.0908
Epoch [23/80], Step [500/500], Loss: 0.1936
Epoch [24/80], Step [100/500], Loss: 0.1485
Epoch [24/80], Step [200/500], Loss: 0.1572
Epoch [24/80], Step [300/500], Loss: 0.1881
Epoch [24/80], Step [400/500], Loss: 0.1262
Epoch [24/80], Step [500/500], Loss: 0.3006
Epoch [25/80], Step [100/500], Loss: 0.2768
Epoch [25/80], Step [200/500], Loss: 0.0902
Epoch [25/80], Step [300/500], Loss: 0.2313
Epoch [25/80], Step [400/500], Loss: 0.1361
Epoch [25/80], Step [500/500], Loss: 0.2736
Epoch [26/80], Step [100/500], Loss: 0.1499
Epoch [26/80], Step [200/500], Loss: 0.1687
Epoch [26/80], Step [300/500], Loss: 0.1190
Epoch [26/80], Step [400/500], Loss: 0.1117
Epoch [26/80], Step [500/500], Loss: 0.1268
Epoch [27/80], Step [100/500], Loss: 0.1518
Epoch [27/80], Step [200/500], Loss: 0.1603
Epoch [27/80], Step [300/500], Loss: 0.1415
Epoch [27/80], Step [400/500], Loss: 0.2641
Epoch [27/80], Step [500/500], Loss: 0.0748
Epoch [28/80], Step [100/500], Loss: 0.2301
Epoch [28/80], Step [200/500], Loss: 0.2718
Epoch [28/80], Step [300/500], Loss: 0.2650
Epoch [28/80], Step [400/500], Loss: 0.0754
Epoch [28/80], Step [500/500], Loss: 0.1454
Epoch [29/80], Step [100/500], Loss: 0.1373
Epoch [29/80], Step [200/500], Loss: 0.1285
Epoch [29/80], Step [300/500], Loss: 0.1345
Epoch [29/80], Step [400/500], Loss: 0.1153
Epoch [29/80], Step [500/500], Loss: 0.2338
Epoch [30/80], Step [100/500], Loss: 0.1643
Epoch [30/80], Step [200/500], Loss: 0.0779
Epoch [30/80], Step [300/500], Loss: 0.1455
Epoch [30/80], Step [400/500], Loss: 0.1288
Epoch [30/80], Step [500/500], Loss: 0.2127
Epoch [31/80], Step [100/500], Loss: 0.2214
Epoch [31/80], Step [200/500], Loss: 0.1338
Epoch [31/80], Step [300/500], Loss: 0.1166
Epoch [31/80], Step [400/500], Loss: 0.0748
Epoch [31/80], Step [500/500], Loss: 0.2321
Epoch [32/80], Step [100/500], Loss: 0.1146
Epoch [32/80], Step [200/500], Loss: 0.1730
Epoch [32/80], Step [300/500], Loss: 0.1165
Epoch [32/80], Step [400/500], Loss: 0.2201
Epoch [32/80], Step [500/500], Loss: 0.0860
Epoch [33/80], Step [100/500], Loss: 0.1171
Epoch [33/80], Step [200/500], Loss: 0.1427
Epoch [33/80], Step [300/500], Loss: 0.1329
Epoch [33/80], Step [400/500], Loss: 0.1102
Epoch [33/80], Step [500/500], Loss: 0.1330
Epoch [34/80], Step [100/500], Loss: 0.1335
Epoch [34/80], Step [200/500], Loss: 0.1465
Epoch [34/80], Step [300/500], Loss: 0.1598
Epoch [34/80], Step [400/500], Loss: 0.0849
Epoch [34/80], Step [500/500], Loss: 0.0847
Epoch [35/80], Step [100/500], Loss: 0.2173
Epoch [35/80], Step [200/500], Loss: 0.1172
Epoch [35/80], Step [300/500], Loss: 0.1516
Epoch [35/80], Step [400/500], Loss: 0.1212
Epoch [35/80], Step [500/500], Loss: 0.0644
Epoch [36/80], Step [100/500], Loss: 0.0651
Epoch [36/80], Step [200/500], Loss: 0.1346
Epoch [36/80], Step [300/500], Loss: 0.0986
Epoch [36/80], Step [400/500], Loss: 0.1141
Epoch [36/80], Step [500/500], Loss: 0.1344
Epoch [37/80], Step [100/500], Loss: 0.1834
Epoch [37/80], Step [200/500], Loss: 0.1162
Epoch [37/80], Step [300/500], Loss: 0.1637
Epoch [37/80], Step [400/500], Loss: 0.0949
Epoch [37/80], Step [500/500], Loss: 0.1504
Epoch [38/80], Step [100/500], Loss: 0.1251
Epoch [38/80], Step [200/500], Loss: 0.1133
Epoch [38/80], Step [300/500], Loss: 0.1080
Epoch [38/80], Step [400/500], Loss: 0.0686
Epoch [38/80], Step [500/500], Loss: 0.1099
Epoch [39/80], Step [100/500], Loss: 0.0616
Epoch [39/80], Step [200/500], Loss: 0.1919
Epoch [39/80], Step [300/500], Loss: 0.1736
Epoch [39/80], Step [400/500], Loss: 0.1276
Epoch [39/80], Step [500/500], Loss: 0.0810
Epoch [40/80], Step [100/500], Loss: 0.1305
Epoch [40/80], Step [200/500], Loss: 0.1893
Epoch [40/80], Step [300/500], Loss: 0.0975
Epoch [40/80], Step [400/500], Loss: 0.0918
Epoch [40/80], Step [500/500], Loss: 0.0549
Epoch [41/80], Step [100/500], Loss: 0.0390
Epoch [41/80], Step [200/500], Loss: 0.0826
Epoch [41/80], Step [300/500], Loss: 0.0812
Epoch [41/80], Step [400/500], Loss: 0.1012
Epoch [41/80], Step [500/500], Loss: 0.0991
Epoch [42/80], Step [100/500], Loss: 0.1419
Epoch [42/80], Step [200/500], Loss: 0.1208
Epoch [42/80], Step [300/500], Loss: 0.0862
Epoch [42/80], Step [400/500], Loss: 0.0817
Epoch [42/80], Step [500/500], Loss: 0.0749
Epoch [43/80], Step [100/500], Loss: 0.0834
Epoch [43/80], Step [200/500], Loss: 0.0713
Epoch [43/80], Step [300/500], Loss: 0.0794
Epoch [43/80], Step [400/500], Loss: 0.1317
Epoch [43/80], Step [500/500], Loss: 0.0561
Epoch [44/80], Step [100/500], Loss: 0.1528
Epoch [44/80], Step [200/500], Loss: 0.0989
Epoch [44/80], Step [300/500], Loss: 0.1040
Epoch [44/80], Step [400/500], Loss: 0.0633
Epoch [44/80], Step [500/500], Loss: 0.0580
Epoch [45/80], Step [100/500], Loss: 0.0817
Epoch [45/80], Step [200/500], Loss: 0.0723
Epoch [45/80], Step [300/500], Loss: 0.0435
Epoch [45/80], Step [400/500], Loss: 0.1233
Epoch [45/80], Step [500/500], Loss: 0.0652
Epoch [46/80], Step [100/500], Loss: 0.0720
Epoch [46/80], Step [200/500], Loss: 0.0727
Epoch [46/80], Step [300/500], Loss: 0.0731
Epoch [46/80], Step [400/500], Loss: 0.1015
Epoch [46/80], Step [500/500], Loss: 0.1100
Epoch [47/80], Step [100/500], Loss: 0.1373
Epoch [47/80], Step [200/500], Loss: 0.0711
Epoch [47/80], Step [300/500], Loss: 0.0612
Epoch [47/80], Step [400/500], Loss: 0.1126
Epoch [47/80], Step [500/500], Loss: 0.0481
Epoch [48/80], Step [100/500], Loss: 0.0284
Epoch [48/80], Step [200/500], Loss: 0.0472
Epoch [48/80], Step [300/500], Loss: 0.0857
Epoch [48/80], Step [400/500], Loss: 0.0402
Epoch [48/80], Step [500/500], Loss: 0.0856
Epoch [49/80], Step [100/500], Loss: 0.0678
Epoch [49/80], Step [200/500], Loss: 0.0627
Epoch [49/80], Step [300/500], Loss: 0.0598
Epoch [49/80], Step [400/500], Loss: 0.0643
Epoch [49/80], Step [500/500], Loss: 0.0256
Epoch [50/80], Step [100/500], Loss: 0.0903
Epoch [50/80], Step [200/500], Loss: 0.0344
Epoch [50/80], Step [300/500], Loss: 0.0522
Epoch [50/80], Step [400/500], Loss: 0.0502
Epoch [50/80], Step [500/500], Loss: 0.0344
Epoch [51/80], Step [100/500], Loss: 0.0654
Epoch [51/80], Step [200/500], Loss: 0.0376
Epoch [51/80], Step [300/500], Loss: 0.0347
Epoch [51/80], Step [400/500], Loss: 0.0391
Epoch [51/80], Step [500/500], Loss: 0.0918
Epoch [52/80], Step [100/500], Loss: 0.0627
Epoch [52/80], Step [200/500], Loss: 0.0631
Epoch [52/80], Step [300/500], Loss: 0.1437
Epoch [52/80], Step [400/500], Loss: 0.1198
Epoch [52/80], Step [500/500], Loss: 0.0595
Epoch [53/80], Step [100/500], Loss: 0.0501
Epoch [53/80], Step [200/500], Loss: 0.0416
Epoch [53/80], Step [300/500], Loss: 0.0831
Epoch [53/80], Step [400/500], Loss: 0.0350
Epoch [53/80], Step [500/500], Loss: 0.0257
Epoch [54/80], Step [100/500], Loss: 0.0628
Epoch [54/80], Step [200/500], Loss: 0.0533
Epoch [54/80], Step [300/500], Loss: 0.0226
Epoch [54/80], Step [400/500], Loss: 0.0379
Epoch [54/80], Step [500/500], Loss: 0.0605
Epoch [55/80], Step [100/500], Loss: 0.1083
Epoch [55/80], Step [200/500], Loss: 0.1897
Epoch [55/80], Step [300/500], Loss: 0.0573
Epoch [55/80], Step [400/500], Loss: 0.0658
Epoch [55/80], Step [500/500], Loss: 0.0485
Epoch [56/80], Step [100/500], Loss: 0.0430
Epoch [56/80], Step [200/500], Loss: 0.0346
Epoch [56/80], Step [300/500], Loss: 0.0393
Epoch [56/80], Step [400/500], Loss: 0.0278
Epoch [56/80], Step [500/500], Loss: 0.0634
Epoch [57/80], Step [100/500], Loss: 0.0588
Epoch [57/80], Step [200/500], Loss: 0.0300
Epoch [57/80], Step [300/500], Loss: 0.0223
Epoch [57/80], Step [400/500], Loss: 0.1497
Epoch [57/80], Step [500/500], Loss: 0.0777
Epoch [58/80], Step [100/500], Loss: 0.0809
Epoch [58/80], Step [200/500], Loss: 0.0934
Epoch [58/80], Step [300/500], Loss: 0.0982
Epoch [58/80], Step [400/500], Loss: 0.1587
Epoch [58/80], Step [500/500], Loss: 0.0417
Epoch [59/80], Step [100/500], Loss: 0.0371
Epoch [59/80], Step [200/500], Loss: 0.1052
Epoch [59/80], Step [300/500], Loss: 0.0455
Epoch [59/80], Step [400/500], Loss: 0.0274
Epoch [59/80], Step [500/500], Loss: 0.0616
Epoch [60/80], Step [100/500], Loss: 0.1352
Epoch [60/80], Step [200/500], Loss: 0.0750
Epoch [60/80], Step [300/500], Loss: 0.0705
Epoch [60/80], Step [400/500], Loss: 0.0296
Epoch [60/80], Step [500/500], Loss: 0.0380
Epoch [61/80], Step [100/500], Loss: 0.0438
Epoch [61/80], Step [200/500], Loss: 0.0599
Epoch [61/80], Step [300/500], Loss: 0.0504
Epoch [61/80], Step [400/500], Loss: 0.0469
Epoch [61/80], Step [500/500], Loss: 0.0534
Epoch [62/80], Step [100/500], Loss: 0.0200
Epoch [62/80], Step [200/500], Loss: 0.0518
Epoch [62/80], Step [300/500], Loss: 0.0660
Epoch [62/80], Step [400/500], Loss: 0.0473
Epoch [62/80], Step [500/500], Loss: 0.0292
Epoch [63/80], Step [100/500], Loss: 0.0576
Epoch [63/80], Step [200/500], Loss: 0.0643
Epoch [63/80], Step [300/500], Loss: 0.0856
Epoch [63/80], Step [400/500], Loss: 0.0674
Epoch [63/80], Step [500/500], Loss: 0.0834
Epoch [64/80], Step [100/500], Loss: 0.0638
Epoch [64/80], Step [200/500], Loss: 0.0802
Epoch [64/80], Step [300/500], Loss: 0.0700
Epoch [64/80], Step [400/500], Loss: 0.0195
Epoch [64/80], Step [500/500], Loss: 0.0488
Epoch [65/80], Step [100/500], Loss: 0.0358
Epoch [65/80], Step [200/500], Loss: 0.0692
Epoch [65/80], Step [300/500], Loss: 0.0298
Epoch [65/80], Step [400/500], Loss: 0.0233
Epoch [65/80], Step [500/500], Loss: 0.0875
Epoch [66/80], Step [100/500], Loss: 0.0298
Epoch [66/80], Step [200/500], Loss: 0.0509
Epoch [66/80], Step [300/500], Loss: 0.0227
Epoch [66/80], Step [400/500], Loss: 0.1122
Epoch [66/80], Step [500/500], Loss: 0.0954
Epoch [67/80], Step [100/500], Loss: 0.0623
Epoch [67/80], Step [200/500], Loss: 0.0213
Epoch [67/80], Step [300/500], Loss: 0.0553
Epoch [67/80], Step [400/500], Loss: 0.0296
Epoch [67/80], Step [500/500], Loss: 0.0715
Epoch [68/80], Step [100/500], Loss: 0.0543
Epoch [68/80], Step [200/500], Loss: 0.0407
Epoch [68/80], Step [300/500], Loss: 0.0370
Epoch [68/80], Step [400/500], Loss: 0.0279
Epoch [68/80], Step [500/500], Loss: 0.0512
Epoch [69/80], Step [100/500], Loss: 0.0297
Epoch [69/80], Step [200/500], Loss: 0.0583
Epoch [69/80], Step [300/500], Loss: 0.0760
Epoch [69/80], Step [400/500], Loss: 0.0403
Epoch [69/80], Step [500/500], Loss: 0.0189
Epoch [70/80], Step [100/500], Loss: 0.1321
Epoch [70/80], Step [200/500], Loss: 0.0988
Epoch [70/80], Step [300/500], Loss: 0.0440
Epoch [70/80], Step [400/500], Loss: 0.0250
Epoch [70/80], Step [500/500], Loss: 0.0671
Epoch [71/80], Step [100/500], Loss: 0.0293
Epoch [71/80], Step [200/500], Loss: 0.0672
Epoch [71/80], Step [300/500], Loss: 0.0317
Epoch [71/80], Step [400/500], Loss: 0.0436
Epoch [71/80], Step [500/500], Loss: 0.0260
Epoch [72/80], Step [100/500], Loss: 0.0429
Epoch [72/80], Step [200/500], Loss: 0.0222
Epoch [72/80], Step [300/500], Loss: 0.0480
Epoch [72/80], Step [400/500], Loss: 0.0367
Epoch [72/80], Step [500/500], Loss: 0.0134
Epoch [73/80], Step [100/500], Loss: 0.0628
Epoch [73/80], Step [200/500], Loss: 0.0403
Epoch [73/80], Step [300/500], Loss: 0.0436
Epoch [73/80], Step [400/500], Loss: 0.1032
Epoch [73/80], Step [500/500], Loss: 0.0663
Epoch [74/80], Step [100/500], Loss: 0.0192
Epoch [74/80], Step [200/500], Loss: 0.0254
Epoch [74/80], Step [300/500], Loss: 0.0436
Epoch [74/80], Step [400/500], Loss: 0.1073
Epoch [74/80], Step [500/500], Loss: 0.0539
Epoch [75/80], Step [100/500], Loss: 0.0437
Epoch [75/80], Step [200/500], Loss: 0.0813
Epoch [75/80], Step [300/500], Loss: 0.0821
Epoch [75/80], Step [400/500], Loss: 0.0847
Epoch [75/80], Step [500/500], Loss: 0.0428
Epoch [76/80], Step [100/500], Loss: 0.0912
Epoch [76/80], Step [200/500], Loss: 0.0295
Epoch [76/80], Step [300/500], Loss: 0.0700
Epoch [76/80], Step [400/500], Loss: 0.0480
Epoch [76/80], Step [500/500], Loss: 0.0358
Epoch [77/80], Step [100/500], Loss: 0.0178
Epoch [77/80], Step [200/500], Loss: 0.0154
Epoch [77/80], Step [300/500], Loss: 0.0662
Epoch [77/80], Step [400/500], Loss: 0.0258
Epoch [77/80], Step [500/500], Loss: 0.0811
Epoch [78/80], Step [100/500], Loss: 0.0542
Epoch [78/80], Step [200/500], Loss: 0.0643
Epoch [78/80], Step [300/500], Loss: 0.0575
Epoch [78/80], Step [400/500], Loss: 0.0371
Epoch [78/80], Step [500/500], Loss: 0.0512
Epoch [79/80], Step [100/500], Loss: 0.0240
Epoch [79/80], Step [200/500], Loss: 0.0133
Epoch [79/80], Step [300/500], Loss: 0.0532
Epoch [79/80], Step [400/500], Loss: 0.0760
Epoch [79/80], Step [500/500], Loss: 0.0356
Epoch [80/80], Step [100/500], Loss: 0.0728
Epoch [80/80], Step [200/500], Loss: 0.0553
Epoch [80/80], Step [300/500], Loss: 0.0228
Epoch [80/80], Step [400/500], Loss: 0.0324
Epoch [80/80], Step [500/500], Loss: 0.0701
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
# Test the model.
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
        
    print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
Accuracy of the model on the test images: 89.89 %
  • 1
# Save the model
torch.save(model.state_dict(), 'ResNet.ckpt')
  • 1
  • 2

  • 1
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/598249
推荐阅读
相关标签
  

闽ICP备14008679号