当前位置:   article > 正文

海量Web日志分析 用Hadoop提取KPI统计指标

mapreduce计算 浏览器的占比 都是哪些浏览器在访问 每个浏览器访问了多少次

Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/hadoop-mapreduce-log-kpi/

hadoop-kpi-logo

前言

Web日志包含着网站最重要的信息,通过日志分析,我们可以知道网站的访问量,哪个网页访问人数最多,哪个网页最有价值等。一般中型的网站(10W的PV以上),每天会产生1G以上Web日志文件。大型或超大型的网站,可能每小时就会产生10G的数据量。

对于日志的这种规模的数据,用Hadoop进行日志分析,是最适合不过的了。

目录

  1. Web日志分析概述
  2. 需求分析:KPI指标设计
  3. 算法模型:Hadoop并行算法
  4. 架构设计:日志KPI系统架构
  5. 程序开发1:用Maven构建Hadoop项目
  6. 程序开发2:MapReduce程序实现

1. Web日志分析概述

Web日志由Web服务器产生,可能是Nginx, Apache, Tomcat等。从Web日志中,我们可以获取网站每类页面的PV值(PageView,页面访问量)、独立IP数;稍微复杂一些的,可以计算得出用户所检索的关键词排行榜、用户停留时间最高的页面等;更复杂的,构建广告点击模型、分析用户行为特征等等。

在Web日志中,每条日志通常代表着用户的一次访问行为,例如下面就是一条nginx日志:

  1. 222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939
  2. "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1)
  3. AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"

拆解为以下8个变量

  • remote_addr: 记录客户端的ip地址, 222.68.172.190
  • remote_user: 记录客户端用户名称, –
  • time_local: 记录访问时间与时区, [18/Sep/2013:06:49:57 +0000]
  • request: 记录请求的url与http协议, “GET /images/my.jpg HTTP/1.1”
  • status: 记录请求状态,成功是200, 200
  • body_bytes_sent: 记录发送给客户端文件主体内容大小, 19939
  • http_referer: 用来记录从那个页面链接访问过来的, “http://www.angularjs.cn/A00n”
  • http_user_agent: 记录客户浏览器的相关信息, “Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36”

注:要更多的信息,则要用其它手段去获取,通过js代码单独发送请求,使用cookies记录用户的访问信息。

利用这些日志信息,我们可以深入挖掘网站的秘密了。

少量数据的情况

少量数据的情况(10Mb,100Mb,10G),在单机处理尚能忍受的时候,我可以直接利用各种Unix/Linux工具,awk、grep、sort、join等都是日志分析的利器,再配合perl, python,正则表达工,基本就可以解决所有的问题。

例如,我们想从上面提到的nginx日志中得到访问量最高前10个IP,实现很简单:

  1. ~ cat access.log.10 | awk '{a[$1]++} END {for(b in a) print b"\t"a[b]}' | sort -k2 -r | head -n 10
  2. 163.177.71.12 972
  3. 101.226.68.137 972
  4. 183.195.232.138 971
  5. 50.116.27.194 97
  6. 14.17.29.86 96
  7. 61.135.216.104 94
  8. 61.135.216.105 91
  9. 61.186.190.41 9
  10. 59.39.192.108 9
  11. 220.181.51.212 9

海量数据的情况

当数据量每天以10G、100G增长的时候,单机处理能力已经不能满足需求。我们就需要增加系统的复杂性,用计算机集群,存储阵列来解决。在Hadoop出现之前,海量数据存储,和海量日志分析都是非常困难的。只有少数一些公司,掌握着高效的并行计算,分步式计算,分步式存储的核心技术。

Hadoop的出现,大幅度的降低了海量数据处理的门槛,让小公司甚至是个人都能力,搞定海量数据。并且,Hadoop非常适用于日志分析系统。

2.需求分析:KPI指标设计

下面我们将从一个公司案例出发来全面的解释,如何用进行海量Web日志分析,提取KPI数据

案例介绍
某电子商务网站,在线团购业务。每日PV数100w,独立IP数5w。用户通常在工作日上午10:00-12:00和下午15:00-18:00访问量最大。日间主要是通过PC端浏览器访问,休息日及夜间通过移动设备访问较多。网站搜索浏量占整个网站的80%,PC用户不足1%的用户会消费,移动用户有5%会消费。

通过简短的描述,我们可以粗略地看出,这家电商网站的经营状况,并认识到愿意消费的用户从哪里来,有哪些潜在的用户可以挖掘,网站是否存在倒闭风险等。

KPI指标设计

  • PV(PageView): 页面访问量统计
  • IP: 页面独立IP的访问量统计
  • Time: 用户每小时PV的统计
  • Source: 用户来源域名的统计
  • Browser: 用户的访问设备统计

注:商业保密限制,无法提供电商网站的日志。
下面的内容,将以我的个人网站为例提取数据进行分析。

百度统计,对我个人网站做的统计!http://www.fens.me

基本统计指标:
hadoop-kpi-baidu

用户的访问设备统计指标:
hadoop-kpi-baidu2

从商业的角度,个人网站的特征与电商网站不太一样,没有转化率,同时跳出率也比较高。从技术的角度,同样都关注KPI指标设计。

3.算法模型:Hadoop并行算法

hadoop-kpi-log

并行算法的设计:
注:找到第一节有定义的8个变量

PV(PageView): 页面访问量统计

  • Map过程{key:$request,value:1}
  • Reduce过程{key:$request,value:求和(sum)}

IP: 页面独立IP的访问量统计

  • Map: {key:$request,value:$remote_addr}
  • Reduce: {key:$request,value:去重再求和(sum(unique))}

Time: 用户每小时PV的统计

  • Map: {key:$time_local,value:1}
  • Reduce: {key:$time_local,value:求和(sum)}

Source: 用户来源域名的统计

  • Map: {key:$http_referer,value:1}
  • Reduce: {key:$http_referer,value:求和(sum)}

Browser: 用户的访问设备统计

  • Map: {key:$http_user_agent,value:1}
  • Reduce: {key:$http_user_agent,value:求和(sum)}

4.架构设计:日志KPI系统架构

hadoop-kpi-architect

上图中,左边是Application业务系统,右边是Hadoop的HDFS, MapReduce。

  1. 日志是由业务系统产生的,我们可以设置web服务器每天产生一个新的目录,目录下面会产生多个日志文件,每个日志文件64M。
  2. 设置系统定时器CRON,夜间在0点后,向HDFS导入昨天的日志文件。
  3. 完成导入后,设置系统定时器,启动MapReduce程序,提取并计算统计指标。
  4. 完成计算后,设置系统定时器,从HDFS导出统计指标数据到数据库,方便以后的即使查询。

hadoop-kpi-process

上面这幅图,我们可以看得更清楚,数据是如何流动的。蓝色背景的部分是在Hadoop中的,接下来我们的任务就是完成MapReduce的程序实现。

5.程序开发1:用Maven构建Hadoop项目

请参考文章:用Maven构建Hadoop项目

win7的开发环境 和 Hadoop的运行环境 ,在上面文章中已经介绍过了。

我们需要放日志文件,上传的HDFS里/user/hdfs/log_kpi/目录,参考下面的命令操作

  1. ~ hadoop fs -mkdir /user/hdfs/log_kpi
  2. ~ hadoop fs -copyFromLocal /home/conan/datafiles/access.log.10 /user/hdfs/log_kpi/

我已经把整个MapReduce的实现都放到了github上面:

https://github.com/bsspirit/maven_hadoop_template/releases/tag/kpi_v1

6.程序开发2:MapReduce程序实现

开发流程:

  1. 对日志行的解析
  2. Map函数实现
  3. Reduce函数实现
  4. 启动程序实现

1). 对日志行的解析
新建文件:org.conan.myhadoop.mr.kpi.KPI.java

  1. package org.conan.myhadoop.mr.kpi;
  2. import java.text.ParseException;
  3. import java.text.SimpleDateFormat;
  4. import java.util.Date;
  5. import java.util.Locale;
  6. /*
  7. * KPI Object
  8. */
  9. public class KPI {
  10. private String remote_addr;// 记录客户端的ip地址
  11. private String remote_user;// 记录客户端用户名称,忽略属性"-"
  12. private String time_local;// 记录访问时间与时区
  13. private String request;// 记录请求的url与http协议
  14. private String status;// 记录请求状态;成功是200
  15. private String body_bytes_sent;// 记录发送给客户端文件主体内容大小
  16. private String http_referer;// 用来记录从那个页面链接访问过来的
  17. private String http_user_agent;// 记录客户浏览器的相关信息
  18. private boolean valid = true;// 判断数据是否合法
  19. @Override
  20. public String toString() {
  21. StringBuilder sb = new StringBuilder();
  22. sb.append("valid:" + this.valid);
  23. sb.append("\nremote_addr:" + this.remote_addr);
  24. sb.append("\nremote_user:" + this.remote_user);
  25. sb.append("\ntime_local:" + this.time_local);
  26. sb.append("\nrequest:" + this.request);
  27. sb.append("\nstatus:" + this.status);
  28. sb.append("\nbody_bytes_sent:" + this.body_bytes_sent);
  29. sb.append("\nhttp_referer:" + this.http_referer);
  30. sb.append("\nhttp_user_agent:" + this.http_user_agent);
  31. return sb.toString();
  32. }
  33. public String getRemote_addr() {
  34. return remote_addr;
  35. }
  36. public void setRemote_addr(String remote_addr) {
  37. this.remote_addr = remote_addr;
  38. }
  39. public String getRemote_user() {
  40. return remote_user;
  41. }
  42. public void setRemote_user(String remote_user) {
  43. this.remote_user = remote_user;
  44. }
  45. public String getTime_local() {
  46. return time_local;
  47. }
  48. public Date getTime_local_Date() throws ParseException {
  49. SimpleDateFormat df = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss", Locale.US);
  50. return df.parse(this.time_local);
  51. }
  52. public String getTime_local_Date_hour() throws ParseException{
  53. SimpleDateFormat df = new SimpleDateFormat("yyyyMMddHH");
  54. return df.format(this.getTime_local_Date());
  55. }
  56. public void setTime_local(String time_local) {
  57. this.time_local = time_local;
  58. }
  59. public String getRequest() {
  60. return request;
  61. }
  62. public void setRequest(String request) {
  63. this.request = request;
  64. }
  65. public String getStatus() {
  66. return status;
  67. }
  68. public void setStatus(String status) {
  69. this.status = status;
  70. }
  71. public String getBody_bytes_sent() {
  72. return body_bytes_sent;
  73. }
  74. public void setBody_bytes_sent(String body_bytes_sent) {
  75. this.body_bytes_sent = body_bytes_sent;
  76. }
  77. public String getHttp_referer() {
  78. return http_referer;
  79. }
  80. public String getHttp_referer_domain(){
  81. if(http_referer.length()<8){
  82. return http_referer;
  83. }
  84. String str=this.http_referer.replace("\"", "").replace("http://", "").replace("https://", "");
  85. return str.indexOf("/")>0?str.substring(0, str.indexOf("/")):str;
  86. }
  87. public void setHttp_referer(String http_referer) {
  88. this.http_referer = http_referer;
  89. }
  90. public String getHttp_user_agent() {
  91. return http_user_agent;
  92. }
  93. public void setHttp_user_agent(String http_user_agent) {
  94. this.http_user_agent = http_user_agent;
  95. }
  96. public boolean isValid() {
  97. return valid;
  98. }
  99. public void setValid(boolean valid) {
  100. this.valid = valid;
  101. }
  102. public static void main(String args[]) {
  103. String line = "222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] \"GET /images/my.jpg HTTP/1.1\" 200 19939 \"http://www.angularjs.cn/A00n\" \"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36\"";
  104. System.out.println(line);
  105. KPI kpi = new KPI();
  106. String[] arr = line.split(" ");
  107. kpi.setRemote_addr(arr[0]);
  108. kpi.setRemote_user(arr[1]);
  109. kpi.setTime_local(arr[3].substring(1));
  110. kpi.setRequest(arr[6]);
  111. kpi.setStatus(arr[8]);
  112. kpi.setBody_bytes_sent(arr[9]);
  113. kpi.setHttp_referer(arr[10]);
  114. kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
  115. System.out.println(kpi);
  116. try {
  117. SimpleDateFormat df = new SimpleDateFormat("yyyy.MM.dd:HH:mm:ss", Locale.US);
  118. System.out.println(df.format(kpi.getTime_local_Date()));
  119. System.out.println(kpi.getTime_local_Date_hour());
  120. System.out.println(kpi.getHttp_referer_domain());
  121. } catch (ParseException e) {
  122. e.printStackTrace();
  123. }
  124. }
  125. }

从日志文件中,取一行通过main函数写一个简单的解析测试。

控制台输出:

  1. 222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939 "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"
  2. valid:true
  3. remote_addr:222.68.172.190
  4. remote_user:-
  5. time_local:18/Sep/2013:06:49:57
  6. request:/images/my.jpg
  7. status:200
  8. body_bytes_sent:19939
  9. http_referer:"http://www.angularjs.cn/A00n"
  10. http_user_agent:"Mozilla/5.0 (Windows
  11. 2013.09.18:06:49:57
  12. 2013091806
  13. www.angularjs.cn

我们看到日志行,被正确的解析成了kpi对象的属性。我们把解析过程,单独封装成一个方法。

  1. private static KPI parser(String line) {
  2. System.out.println(line);
  3. KPI kpi = new KPI();
  4. String[] arr = line.split(" ");
  5. if (arr.length > 11) {
  6. kpi.setRemote_addr(arr[0]);
  7. kpi.setRemote_user(arr[1]);
  8. kpi.setTime_local(arr[3].substring(1));
  9. kpi.setRequest(arr[6]);
  10. kpi.setStatus(arr[8]);
  11. kpi.setBody_bytes_sent(arr[9]);
  12. kpi.setHttp_referer(arr[10]);
  13. if (arr.length > 12) {
  14. kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
  15. } else {
  16. kpi.setHttp_user_agent(arr[11]);
  17. }
  18. if (Integer.parseInt(kpi.getStatus()) >= 400) {// 大于400,HTTP错误
  19. kpi.setValid(false);
  20. }
  21. } else {
  22. kpi.setValid(false);
  23. }
  24. return kpi;
  25. }

对map方法,reduce方法,启动方法,我们单独写一个类来实现

下面将分别介绍MapReduce的实现类:

  • PV:org.conan.myhadoop.mr.kpi.KPIPV.java
  • IP: org.conan.myhadoop.mr.kpi.KPIIP.java
  • Time: org.conan.myhadoop.mr.kpi.KPITime.java
  • Browser: org.conan.myhadoop.mr.kpi.KPIBrowser.java

1). PV:org.conan.myhadoop.mr.kpi.KPIPV.java

  1. package org.conan.myhadoop.mr.kpi;
  2. import java.io.IOException;
  3. import java.util.Iterator;
  4. import org.apache.hadoop.fs.Path;
  5. import org.apache.hadoop.io.IntWritable;
  6. import org.apache.hadoop.io.Text;
  7. import org.apache.hadoop.mapred.FileInputFormat;
  8. import org.apache.hadoop.mapred.FileOutputFormat;
  9. import org.apache.hadoop.mapred.JobClient;
  10. import org.apache.hadoop.mapred.JobConf;
  11. import org.apache.hadoop.mapred.MapReduceBase;
  12. import org.apache.hadoop.mapred.Mapper;
  13. import org.apache.hadoop.mapred.OutputCollector;
  14. import org.apache.hadoop.mapred.Reducer;
  15. import org.apache.hadoop.mapred.Reporter;
  16. import org.apache.hadoop.mapred.TextInputFormat;
  17. import org.apache.hadoop.mapred.TextOutputFormat;
  18. public class KPIPV {
  19. public static class KPIPVMapper extends MapReduceBase implements Mapper {
  20. private IntWritable one = new IntWritable(1);
  21. private Text word = new Text();
  22. @Override
  23. public void map(Object key, Text value, OutputCollector output, Reporter reporter) throws IOException {
  24. KPI kpi = KPI.filterPVs(value.toString());
  25. if (kpi.isValid()) {
  26. word.set(kpi.getRequest());
  27. output.collect(word, one);
  28. }
  29. }
  30. }
  31. public static class KPIPVReducer extends MapReduceBase implements Reducer {
  32. private IntWritable result = new IntWritable();
  33. @Override
  34. public void reduce(Text key, Iterator values, OutputCollector output, Reporter reporter) throws IOException {
  35. int sum = 0;
  36. while (values.hasNext()) {
  37. sum += values.next().get();
  38. }
  39. result.set(sum);
  40. output.collect(key, result);
  41. }
  42. }
  43. public static void main(String[] args) throws Exception {
  44. String input = "hdfs://192.168.1.210:9000/user/hdfs/log_kpi/";
  45. String output = "hdfs://192.168.1.210:9000/user/hdfs/log_kpi/pv";
  46. JobConf conf = new JobConf(KPIPV.class);
  47. conf.setJobName("KPIPV");
  48. conf.addResource("classpath:/hadoop/core-site.xml");
  49. conf.addResource("classpath:/hadoop/hdfs-site.xml");
  50. conf.addResource("classpath:/hadoop/mapred-site.xml");
  51. conf.setMapOutputKeyClass(Text.class);
  52. conf.setMapOutputValueClass(IntWritable.class);
  53. conf.setOutputKeyClass(Text.class);
  54. conf.setOutputValueClass(IntWritable.class);
  55. conf.setMapperClass(KPIPVMapper.class);
  56. conf.setCombinerClass(KPIPVReducer.class);
  57. conf.setReducerClass(KPIPVReducer.class);
  58. conf.setInputFormat(TextInputFormat.class);
  59. conf.setOutputFormat(TextOutputFormat.class);
  60. FileInputFormat.setInputPaths(conf, new Path(input));
  61. FileOutputFormat.setOutputPath(conf, new Path(output));
  62. JobClient.runJob(conf);
  63. System.exit(0);
  64. }
  65. }

在程序中会调用KPI类的方法

KPI kpi = KPI.filterPVs(value.toString());

通过filterPVs方法,我们可以实现对PV,更多的控制。

在KPK.java中,增加filterPVs方法

  1. /**
  2. * 按page的pv分类
  3. */
  4. public static KPI filterPVs(String line) {
  5. KPI kpi = parser(line);
  6. Set pages = new HashSet();
  7. pages.add("/about");
  8. pages.add("/black-ip-list/");
  9. pages.add("/cassandra-clustor/");
  10. pages.add("/finance-rhive-repurchase/");
  11. pages.add("/hadoop-family-roadmap/");
  12. pages.add("/hadoop-hive-intro/");
  13. pages.add("/hadoop-zookeeper-intro/");
  14. pages.add("/hadoop-mahout-roadmap/");
  15. if (!pages.contains(kpi.getRequest())) {
  16. kpi.setValid(false);
  17. }
  18. return kpi;
  19. }

在filterPVs方法,我们定义了一个pages的过滤,就是只对这个页面进行PV统计。

我们运行一下KPIPV.java

  1. 2013-10-9 11:53:28 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
  2. 信息: Starting flush of map output
  3. 2013-10-9 11:53:28 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
  4. 信息: Finished spill 0
  5. 2013-10-9 11:53:28 org.apache.hadoop.mapred.Task done
  6. 信息: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
  7. 2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
  8. 信息: hdfs://192.168.1.210:9000/user/hdfs/log_kpi/access.log.10:0+3025757
  9. 2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
  10. 信息: hdfs://192.168.1.210:9000/user/hdfs/log_kpi/access.log.10:0+3025757
  11. 2013-10-9 11:53:30 org.apache.hadoop.mapred.Task sendDone
  12. 信息: Task 'attempt_local_0001_m_000000_0' done.
  13. 2013-10-9 11:53:30 org.apache.hadoop.mapred.Task initialize
  14. 信息: Using ResourceCalculatorPlugin : null
  15. 2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
  16. 信息:
  17. 2013-10-9 11:53:30 org.apache.hadoop.mapred.Merger$MergeQueue merge
  18. 信息: Merging 1 sorted segments
  19. 2013-10-9 11:53:30 org.apache.hadoop.mapred.Merger$MergeQueue merge
  20. 信息: Down to the last merge-pass, with 1 segments left of total size: 213 bytes
  21. 2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
  22. 信息:
  23. 2013-10-9 11:53:30 org.apache.hadoop.mapred.Task done
  24. 信息: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
  25. 2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
  26. 信息:
  27. 2013-10-9 11:53:30 org.apache.hadoop.mapred.Task commit
  28. 信息: Task attempt_local_0001_r_000000_0 is allowed to commit now
  29. 2013-10-9 11:53:30 org.apache.hadoop.mapred.FileOutputCommitter commitTask
  30. 信息: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/log_kpi/pv
  31. 2013-10-9 11:53:31 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
  32. 信息: map 100% reduce 0%
  33. 2013-10-9 11:53:33 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
  34. 信息: reduce > reduce
  35. 2013-10-9 11:53:33 org.apache.hadoop.mapred.Task sendDone
  36. 信息: Task 'attempt_local_0001_r_000000_0' done.
  37. 2013-10-9 11:53:34 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
  38. 信息: map 100% reduce 100%
  39. 2013-10-9 11:53:34 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
  40. 信息: Job complete: job_local_0001
  41. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  42. 信息: Counters: 20
  43. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  44. 信息: File Input Format Counters
  45. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  46. 信息: Bytes Read=3025757
  47. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  48. 信息: File Output Format Counters
  49. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  50. 信息: Bytes Written=183
  51. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  52. 信息: FileSystemCounters
  53. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  54. 信息: FILE_BYTES_READ=545
  55. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  56. 信息: HDFS_BYTES_READ=6051514
  57. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  58. 信息: FILE_BYTES_WRITTEN=83472
  59. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  60. 信息: HDFS_BYTES_WRITTEN=183
  61. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  62. 信息: Map-Reduce Framework
  63. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  64. 信息: Map output materialized bytes=217
  65. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  66. 信息: Map input records=14619
  67. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  68. 信息: Reduce shuffle bytes=0
  69. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  70. 信息: Spilled Records=16
  71. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  72. 信息: Map output bytes=2004
  73. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  74. 信息: Total committed heap usage (bytes)=376569856
  75. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  76. 信息: Map input bytes=3025757
  77. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  78. 信息: SPLIT_RAW_BYTES=110
  79. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  80. 信息: Combine input records=76
  81. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  82. 信息: Reduce input records=8
  83. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  84. 信息: Reduce input groups=8
  85. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  86. 信息: Combine output records=8
  87. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  88. 信息: Reduce output records=8
  89. 2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
  90. 信息: Map output records=76

用hadoop命令查看HDFS文件

  1. ~ hadoop fs -cat /user/hdfs/log_kpi/pv/part-00000
  2. /about 5
  3. /black-ip-list/ 2
  4. /cassandra-clustor/ 3
  5. /finance-rhive-repurchase/ 13
  6. /hadoop-family-roadmap/ 13
  7. /hadoop-hive-intro/ 14
  8. /hadoop-mahout-roadmap/ 20
  9. /hadoop-zookeeper-intro/ 6

这样我们就得到了,刚刚日志文件中的,指定页面的PV值。

指定页面,就像网站的站点地图一样,如果没有指定所有访问链接都会被找出来,通过“站点地图”的指定,我们可以更容易地找到,我们所需要的信息。

后面,其他的统计指标的提取思路,和PV的实现过程都是类似的,大家可以直接下载源代码,运行看到结果!!

######################################################
看文字不过瘾,作者视频讲解,请访问网站:http://onbook.me/video
######################################################

转载请注明出处:
http://blog.fens.me/hadoop-mapreduce-log-kpi/

打赏作者

This entry was posted in Dataguru作业, Hadoop实践, JAVA语言实践, 架构设计, 程序算法

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/732072
推荐阅读
相关标签
  

闽ICP备14008679号