赞
踩
特征值和特征向量是线性代数中的概念,用于分析和理解线性变换,特别是由方阵表示的线性变换。它们被用于许多不同的数学领域,包括机器学习和人工智能。
在机器学习中,特征值和特征向量用于表示数据、对数据执行操作以及训练机器学习模型。
在人工智能中,特征值和特征向量用于开发图像识别、自然语言处理和机器人等任务的算法。
1. 特征值 (λ):方阵 A 的特征值是一个标量(单个数字)λ,使得存在一个非零向量 v(特征向量),其中以下等式成立:
AV = λv
换句话说,当您将矩阵 A 乘以特征向量 v 时,您会得到一个新向量,它只是 v 的缩放版本(按特征值 λ 缩放)。
2.特征向量:上面提到的向量v称为特征值λ对应的特征向量。特征向量仅在乘以矩阵 A 时改变尺度(大小);他们的方向保持不变。
从数学上讲,要找到特征值和特征向量,您通常可以求解以下方程来得到 λ 和 v:
(A — λI)v = 0
在哪里:
求解该方程涉及找到使矩阵 (A — λI) 奇异(即其行列式为零)的 λ 值,然后找到相应的 v 向量。
PCA是机器学习和数据分析中广泛使用的降维技术。它利用特征向量和特征值来减少特征数量,同时保留尽可能多的信息。
假设您有一个包含两个变量 X 和 Y 的数据集,并且您希望将其减少到一维。您计算数据的协方差矩阵并找到其特征向量和特征值。假设您获得以下内容:
在 PCA 中,您将选择与最大特征值对应的特征向量作为主成分。在这种情况下,它是 v₁。您将数据投影到该特征向量上以将其减少到一维,从而有效地捕获数据中的大部分方差。
SVD 是一种矩阵分解技术,利用特征值和特征向量进行图像压缩。
考虑表示为矩阵 A 的灰度图像。对此矩阵执行 SVD 以获得三个矩阵:U(左奇异向量)、Σ(奇异值对角矩阵)和 V^T(右奇异向量)。
通过仅保留奇异值的子集(及其相应的特征向量),您可以在压缩图像的同时保留其基本特征。这通常用于图像存储和传输等应用。
特征向量在 Google 的 PageRank 算法中发挥着重要作用,该算法决定了网页在搜索结果中的重要性。在此算法中,网页表示为图中的节点,页面之间的超链接创建一个矩阵。
该矩阵的主特征向量表示网页的 PageRank 分数。相应的特征值有助于确定网页的整体重要性。这使得谷歌可以根据重要性对网页进行排名,帮助用户找到相关内容。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。