当前位置:   article > 正文

Intel MKL库常用模块的C语言实现_mkl库有什么模块

mkl库有什么模块

说明1:Intel MKL官方参考手册以及官方参考例程位于安装目录下examples文件夹中)是最好的参考资料,本文程序大多根据官方例程改写,均可正常运行,我用的编译环境是VS2015+Intel MKL库2019

说明2:由于本人主要是使用Intel MKL库做通信系统仿真,因此文章函数大多是复数单精度浮点形式,实数域函数参考官方手册对参数类型进行相应修改即可,也可以参考以下文章:MKL学习——基本操作C++实现,该文章主要是针对实数域的操作。

1. 随机数生成

1.1 等概率的01分布 viRngUniform

/* 生成信源(等概率的01序列)—— 等概率的伯努利分布 */

#include <stdio.h>
#include <math.h>

#include "mkl.h"
#include "errcheck.inc"

#define SEED    111
#define BRNG    VSL_BRNG_MCG31
#define METHOD  VSL_RNG_METHOD_UNIFORM_STD
#define N       1000    //随机数的数量
#define NN      100     

int main()
{
	int r[N];
	VSLStreamStatePtr stream;
	int i, errcode;
	int a = 0, b = 2;

	/***** Initialize *****/
	errcode = vslNewStream(&stream, BRNG, SEED);
	CheckVslError(errcode);   // 检测随机数生成过程是否出错

	/***** Call RNG *****/
	errcode = viRngUniform(METHOD, stream, N, r, a, b);
	CheckVslError(errcode);

	/***** Printing results *****/
	printf("Results (first 100 of 1000):\n");
	printf("---------------------------\n");
        for (i = 0; i<NN; i++) {
            printf("r[%d]=%d\n", i, r[i]);
        }

	/***** Deinitialize *****/
	errcode = vslDeleteStream(&stream);
	CheckVslError(errcode);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

1.2 (复)高斯分布 vsRngGaussian

/* 生成独立同分布的准静态瑞利衰落信道(还需要将元素储存到矩阵中) */

#include <stdio.h>
#include <math.h>

#include "mkl.h"
#include "errcheck.inc"

#define SEED    777
#define BRNG    VSL_BRNG_MCG31
#define METHOD  VSL_RNG_METHOD_GAUSSIAN_ICDF
#define N       1000
#define NN      10

int main()
{
	float real[N];
	float imag[N];
	MKL_Complex8 H[1000];

	VSLStreamStatePtr stream;
	int i, errcode1,errcode2;
	float a = 0.0, sigma = 1.0;

	/***** Initialize *****/
	vslNewStream(&stream, BRNG, SEED);
	
	/***** Call RNG *****/
	errcode1 = vsRngGaussian(METHOD, stream, N, real, a, sigma);
	CheckVslError(errcode1);

	errcode2 = vsRngGaussian(METHOD, stream, N, imag, a, sigma);
	CheckVslError(errcode2);

	for (i = 0; i<NN; i++) {
		H[i].real = real[i]/(float)sqrt(2);
		H[i].imag = imag[i]/(float)sqrt(2);
	}

	/***** Printing results *****/
	printf("Results (first 10 of 1000):\n");
	printf("---------------------------\n");
	for (i = 0; i<NN; i++) {
		printf("real[%d]=%.4f\n", i, real[i]);
	}

	printf("---------------------------\n");
	for (i = 0; i<NN; i++) {
		printf("imag[%d]=%.4f\n", i, imag[i]);
	}

	printf("---------------------------\n");
	for (i = 0; i<NN; i++) {
		printf("H[%d]=%.4f+(%.4fi)\n", i, H[i].real, H[i].imag);
	}

	/***** Deinitialize *****/
	vslDeleteStream(&stream);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

2. 向量-向量运算

2.1 向量数乘与加法 cblas_caxpby

/* 向量数乘与加法 y = alpha*x+beta*y */

#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"

int main( )
{
	MKL_INT         n, incx, incy;
	MKL_Complex8    alpha, beta;
	MKL_Complex8   *x, *y;
	MKL_INT         len_x, len_y;

	/***************** 参数初始化 *****************/
	n = 5;
	incx = 1;
	incy = 1;
	alpha.imag = 0;
	alpha.real = 2;
	beta.imag = 0;
	beta.real = 1;

	len_x = 1 + (n - 1)* incx;
	len_y = 1 + (n - 1)* incy;
	x = (MKL_Complex8 *)mkl_calloc(len_x, sizeof(MKL_Complex8), 64);
	y = (MKL_Complex8 *)mkl_calloc(len_y, sizeof(MKL_Complex8), 64);

	/******************* 给复数向量x,y赋值 *********************/
	for (int i = 0; i < n; i++) {
		x[i].real = (float)i;
		x[i].imag = (float)(i + 1);
		y[i].real = (float)(i + 2);
		y[i].imag = (float)(i + 3);
	}

	/********** Call CBLAS_CAXPBY subroutine ( C Interface )**********/
	cblas_caxpby(n, &alpha, x, incx, &beta, y, incy);

	/********************** Printing results *******************/
	printf("y = ax + by\n");
	for (int i = 0; i < n; i++) {
		printf("----------------------------------------\n");
		printf("y[%d] = %.0f+%.0fi\n", i, y[i].real, y[i].imag);
	}
	
	mkl_free(x);
	mkl_free(y);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

2.2 向量内积 cblas_cdotu_sub

/* 向量点乘(内积) res = \sigma i=0 to n (x_i*y_i) */

#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"

int main()
{
	MKL_INT        n, incx, incy;
	MKL_Complex8  *x, *y;
	MKL_Complex8   res;
	MKL_INT        len_x, len_y;

	/***************** 参数初始化 *****************/
	n = 5;
	incx = 1;
	incy = 1;

	len_x = 1 + (n - 1)*incx;
	len_y = 1 + (n - 1)*incy;
	x = (MKL_Complex8 *)mkl_calloc(len_x, sizeof(MKL_Complex8), 64);
	y = (MKL_Complex8 *)mkl_calloc(len_y, sizeof(MKL_Complex8), 64);
	
	/******************* 给复数向量x,y赋值 *********************/
	for (int i = 0; i < n; i++) {
		x[i].real = (float)i;
		x[i].imag = (float)(i + 1);
		y[i].real = (float)(i + 2);
		y[i].imag = (float)(i + 3);
	}

	/*      Call CBLAS_CDOTU_SUB subroutine ( C Interface )        */
	cblas_cdotu_sub(n, x, incx, y, incy, &res);

	/********************** Printing results *******************/
	printf("%.0f+%.0fi\n", res.real, res.imag);

	mkl_free(x);
	mkl_free(y);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

2.3 向量范数 cblas_scnrm2

/* 向量范数 res = ||x|| */

#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"

int main()
{
	MKL_INT        n, incx;
	float          res;
	MKL_Complex8  *x;
	MKL_INT        len_x;

	/***************** 参数初始化 *****************/
	n = 5;
	incx = 1;

	len_x = 1 + (n - 1)*(incx);
	x = (MKL_Complex8 *)mkl_calloc(len_x, sizeof(MKL_Complex8), 64);

	/******************* 给复数向量x赋值 *********************/
	for (int i = 0; i < n; i++) {
		x[i].real = (float)i;
		x[i].imag = (float)(i + 1);
	}

	/************* Call CBLAS_SCNRM2 subroutine ( C Interface ) *********/
	res = cblas_scnrm2(n, x, incx);

	/************************* Print output data ********************/
	printf("||x|| = %f\n", res);

	mkl_free(x);
	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

3. 矩阵-向量运算

3.1 矩阵存储方案

/* 以“实数矩阵-向量乘法”为例说明矩阵储存方案 y = alpha*A*x + beta*y
 以下代码以行优先 CblasRowMajor 为例 */

#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"

int main()
{
	MKL_INT         m, n, lda, incx, incy;
	float           alpha, beta;
	float          *a, *x, *y;
	CBLAS_LAYOUT    layout = CblasRowMajor;  // 可变为CblasColMajor
	CBLAS_TRANSPOSE trans = CblasNoTrans;
	MKL_INT         nx, ny, len_x, len_y;

	m = 2;
	n = 5;
	incx = incy = 1;
	alpha = 1;	
	beta = 0;

	a = (float *)mkl_calloc(m*n, sizeof(float), 64);
	if (trans == CblasNoTrans) {
		nx = n;
		ny = m;
	}
	else {
		nx = m;
		ny = n;
	}
	if (layout == CblasRowMajor)
		lda = n;
	else
		lda = m;

	len_x = 1 + (nx - 1)*(incx);
	len_y = 1 + (ny - 1)*(incy);
	x = (float *)mkl_calloc(len_x, sizeof(float), 64);
	y = (float *)mkl_calloc(len_y, sizeof(float), 64);

	/*       Print input data          */
	printf("矩阵为\n");
	for (int i = 0; i < m*n; i++) {
		if (i%nx == 0 && i != 0)
			printf("\n");
		a[i] = (float)i;
		printf("%2.0f", a[i]);
	}
	printf("\n");

	printf("向量为\n");
	for (int i = 0; i < len_x; i++)
	{
		x[i] =(float)(i + 1);
		printf("%2.0f", x[i]);
		printf("\n");
	}
	
	/*      Call CBLAS_SGEMV subroutine ( C Interface )         */
	cblas_sgemv(layout, trans, m, n, alpha, a, lda, x, incx, beta, y, incy);

	/*       Print output data           */
	printf("矩阵-向量乘法结果\n");
	for (int i = 0; i < len_y; i++) {
		printf("%2.0f ", y[i]);
		printf("\n");
	}

	mkl_free(a);
	mkl_free(x);
	mkl_free(y);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75

上述过程中,矩阵a由数组 [ 0 1 2 3 4 5 6 7 8 9 ]

[0123456789]
[0123456789]对其赋值,具体储存过程如下:

行优先CblasRowMajor初始化时,将数组逐行存入矩阵,可表示如下:
[ 0 1 2 3 4 5 6 7 8 9 ] [ 1 2 3 4 5 ] = [ 40 115 ]

[0123456789]
[12345]
=
[40115]
[0516273849]12345=[40115]
列优先CblasColMajor:行优先:初始化时,将数组逐列存入矩阵,可表示如下:
[ 0 2 4 6 8 1 3 5 7 9 ] [ 1 2 3 4 5 ] = [ 80 95 ]
[0246813579]
[12345]
=
[8095]
[0123456789]12345=[8095]

需注意,不管是行优先还是列优先,只要矩阵不转置,矩阵维度都不会发生变化

3.2 矩阵-向量乘法 cblas_cgemv

trans参数控制矩阵A以什么形式参与运算,三个取值含义如下:
CblasNoTrans:A;CblasTrans:A的转置;CblasConjTrans:A的共轭转置

/* 复数矩阵-向量乘法 y = alpha*A*x + beta*y */
#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"

int main()
{
	MKL_INT         m, n, lda, incx, incy;
	MKL_Complex8    alpha, beta;
	MKL_Complex8   *a, *x, *y;
	CBLAS_LAYOUT    layout = CblasRowMajor;
	CBLAS_TRANSPOSE trans = CblasNoTrans;
	MKL_INT         nx, ny, len_x, len_y;

	/***************** 参数初始化 *****************/
	m = 2;
	n = 5;
	incx = incy = 1;
	alpha.real = 1;
	alpha.imag = 0;
	beta.real = 0;
	beta.imag = 0;

	a = (MKL_Complex8 *)mkl_calloc(m*n, sizeof(MKL_Complex8), 64);

	if (trans == CblasNoTrans) {
		nx = n;
		ny = m;
	} else {
		nx = m;
		ny = n;
	}
	if (layout == CblasRowMajor)
		lda = n;
	else
		lda = m;

	len_x = 1 + (nx - 1)*(incx);
	len_y = 1 + (ny - 1)*(incy);
	x = (MKL_Complex8 *)mkl_calloc(len_x, sizeof(MKL_Complex8), 64);
	y = (MKL_Complex8 *)mkl_calloc(len_y, sizeof(MKL_Complex8), 64);

	/************** 矩阵与向量赋值 *******************/
	for (int i = 0; i < m*n; i++) {
		a[i].real = (float)(i + 1);
		a[i].imag = (float)i;
	}
	for (int i = 0; i < len_x; i++) {
		x[i].real = (float)i;
		x[i].imag = (float)(i + 1);
	}

	/******* Call CBLAS_CGEMV subroutine ( C Interface )*******/
	cblas_cgemv(layout, trans, m, n, &alpha, a, lda, x, incx, &beta, y, incy);

	/***************** Print output data *****************/
	for (int i = 0; i < len_y; i++) {
		printf("%f+%fi\n", y[i].real, y[i].imag);
	}

	mkl_free(a);
	mkl_free(x);
	mkl_free(y);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66

4. 矩阵-矩阵运算

4.1 矩阵乘法 cblas_cgemm

/* 矩阵乘法 C = alpha A*B + beta*C */

#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"

int main()
{
	MKL_INT         m, n, k;
	MKL_INT         lda, ldb, ldc;
	MKL_Complex8    alpha, beta;
	MKL_Complex8   *a, *b, *c;
	CBLAS_LAYOUT    layout = CblasRowMajor;
	CBLAS_TRANSPOSE transA = CblasNoTrans;
	CBLAS_TRANSPOSE transB = CblasNoTrans;
	MKL_INT         ma, na, mb, nb;

	/***************** 参数初始化 *****************/
	m = 2;
	n = 5;
	k = 3;
	alpha.real = 1;
	alpha.imag = 0;
	beta.real = beta.imag = 0;

	if (transA == CblasNoTrans) {
		ma = m;
		na = k;
	} else {
		ma = k;
		na = m;
	}
	if (transB == CblasNoTrans) {
		mb = k;
		nb = n;
	} else {
		mb = n;
		nb = k;
	}

	a = (MKL_Complex8 *)mkl_calloc(ma*na, sizeof(MKL_Complex8), 64);
	b = (MKL_Complex8 *)mkl_calloc(mb*nb, sizeof(MKL_Complex8), 64);
	c = (MKL_Complex8 *)mkl_calloc(ma*nb, sizeof(MKL_Complex8), 64);

	/************** 矩阵与向量赋值 *******************/
	for (int i = 0; i < ma*na; i++) {
		a[i].real = (float)(i + 1);
		a[i].imag = (float)i;
	}
	for (int i = 0; i < mb*nb; i++) {
		b[i].real = (float)i;
		b[i].imag = (float)(i + 1);
	}
	
	if (layout == CblasRowMajor) {
		lda = na;
		ldb = nb;
		ldc = nb;
	} else {
		lda = ma;
		ldb = mb;
		ldc = ma;
	}

	/*      Call CGEMM subroutine ( C Interface )                  */
	cblas_cgemm(layout, transA, transB, m, n, k, &alpha, a, lda, b, ldb,
		&beta, c, ldc);

	/*       Print output data                                     */
	for (int i = 0; i < ma*nb; i++) {
		printf("%f+%fi\n", c[i].real, c[i].imag);
	}

	mkl_free(a);
	mkl_free(b);
	mkl_free(c);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79

4.2 矩阵求逆 LAPACKE_cgetrf+LAPACKE_cgetri

/* 矩阵求逆 */

#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"

#define LAYOUT    LAPACK_ROW_MAJOR
#define N          3

int main()
{
	int layout = LAYOUT;
	int m = N;
	int n = N;
	int info1, info2, i;
	int lda = n;
	int ipiv[3];
	MKL_Complex8 *a;
	a = (MKL_Complex8 *)mkl_calloc(m*n, sizeof(MKL_Complex8), 64);

	/************* 矩阵赋值 ***************/
	for (i=0; i<m*n; i++) {
		a[i].real = (float)0;
		a[i].imag = (float)0;
	}
	a[0].real = a[5].real = 1;
	a[1].real = a[4].real = 2;
	a[2].real = a[3].real = 3;
	a[6].imag = 1;
	a[7].imag = 3;
	a[8].imag = 2;

    /* LU分解 + 求逆 */
	info1 = LAPACKE_cgetrf(layout, m, n, a, lda, ipiv);
	info2 = LAPACKE_cgetri(layout, m, a, lda, ipiv);
    
    /* print results*/
	printf("%d\n", info2);
	for (i = 0; i<N*N; i++) {
		printf("%f+(%f)i ", a[i].real, a[i].imag);
	}
	printf("\n");

	mkl_free(a);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

4.3 矩阵的QR分解 LAPACKE_cgeqrf+LAPACKE_cungqr

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "mkl.h"

int main()
{
	int nR = 4;
	int nT = 3;
	int iseed[4] = { 1,2,3,5 };
	MKL_Complex8* H = NULL;
	H = (MKL_Complex8 *)mkl_calloc((nR + nT)*nT, sizeof(MKL_Complex8), 64);
	LAPACKE_clarnv(3, iseed, (nR + nT)*nT, H);  // 复高斯分布CN(0,2)

	printf("------- Before QR decomposition -------\n");
	for (int i = 0; i < (nR + nT)*nT; i++) {
		if (i%nT == 0)
			printf("\n");
		printf("%f+(%f)i ", H[i].real, H[i].imag);
	}
	printf("\n");

	MKL_Complex8 tau[3];   // 注意此处数组大小应随nT变化
	int info1 = LAPACKE_cgeqrf(LAPACK_ROW_MAJOR, nR + nT, nT, H, nT, tau);		// QR分解
	int info2 = LAPACKE_cungqr(LAPACK_ROW_MAJOR, nR + nT, nT, nT, H, nT, tau);	// 仅输出Q矩阵的前nT列

	printf("------- After QR decomposition -------\n");
	for (int i = 0; i < (nR + nT)*nT; i++) {
		if (i%nT == 0)
			printf("\n");
		printf("%f+(%f)i ", H[i].real, H[i].imag);
	}
	printf("\n");

	mkl_free(H);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

5. 常用的子函数模块

5.1 计时函数

double start = dsecnd();
....
double stop  = dsecnd();
printf("Elapsed time = %f seconds\n", stop - start);
// 首次调用时初始化会花费一些时间,如果想要更精确的结果,可在正式计时开始前先调用一次
  • 1
  • 2
  • 3
  • 4
  • 5

5.2 Print matrix

void print_matrix(MKL_LAYOUT layout, MKL_INT m, MKL_INT n, MKL_Complex8* a, MKL_INT lda) {
	MKL_INT i, j;
	for (i = 0; i < m; i++) {
		for (j = 0; j < n; j++) {
			if (layout == MKL_COL_MAJOR) {
				printf(" (%6.3f,%6.3f)", a[i + j * lda].real, a[i + j * lda].imag);
			} else {
				printf(" (%6.3f,%6.3f)", a[j + i * lda].real, a[j + i * lda].imag);
			}
		}
		printf("\n");
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

5.3 生成单位矩阵

int n=500; // 矩阵维度
float *IdentityMatrix; 
IdentityMatrix = (float *)mkl_calloc(n*n, sizeof(float), 64);

for (int i=0; i<n*n; i++) {
    IdentityMatrix[i*(n+1)] = 1.0f; 
}

mkl_free(IdentityMatrix);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

  博主不定期发布『保研/推免、C/C++、5G移动通信、Linux、生活随笔』系列文章,如果觉得本文对你有帮助,可以『点赞+关注』支持一下哦!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/245552
推荐阅读
相关标签
  

闽ICP备14008679号