赞
踩
用path指定数据集格式
path="json"
path="csv"
path="text"
path="panda"
path="imagefolder"
然后用data_files指定文件名称,data_files可以是字符串、列表、或者字典,data_dir指定数据集目录
- from datasets import load_dataset
- dataset = load_dataset('csv', data_files='my_file.csv')
- dataset = load_dataset('csv', data_files=['my_file_1.csv', 'my_file_2.csv', 'my_file_3.csv'])
- dataset = load_dataset('csv', data_files={'train':['my_train_file_1.csv','my_train_file_2.csv'],'test': 'my_test_file.csv'})
如下我们通过打开指定图片目录进行加载图片数据集
- dataset = load_dataset(path="imagefolder",
- data_dir="D:\Desktop\workspace\code\loaddataset\data\images")
- print(dataset)
- print(dataset["train"][0])
图片文本对应
很多情况下加载图片并非只要图片,还会有对应的文本,比如在图片分类的时候,每张图片都对应一个类别。这种情况我们需要在图片所在文件夹中加入一个metadata.jsonl的文件,来指定每个图片对应的类别,格式如下,注意file_name字段必须要有,其他字段可自行命名
- {
- "file_name": "1.jpg",
- "class": 1
- }
- {
- "file_name": "2.png",
- "class": 0
- }
然后我们再来运行
- dataset = load_dataset(path="imagefolder",
- data_dir="D:\Desktop\workspace\code\loaddataset\data\images")
- print(dataset)
- print(dataset["train"][0])
输出如下
- DatasetDict({
- train: Dataset({
- features: ['image', 'class'],
- num_rows: 2
- })
- })
-
- {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=800x320 at 0x2912172B520>, 'class': 1}
一些情况下加载数据集的逻辑较为复杂,需要自定义加载方式。
如下所示,我们数据处理需要是,每条数据包括两张图片,一个文本。
train.jsonl
,把图片和文本对应起来,json文件的格式如下所示- {"text": "pale golden rod circle with old lace background", "image": "images/0.png", "conditioning_image": "conditioning_images/0.png"}
- {"text": "light coral circle with white background", "image": "images/1.png", "conditioning_image": "conditioning_images/1.png"}
- {"text": "aqua circle with light pink background", "image": "images/2.png", "conditioning_image": "conditioning_images/2.png"}
step2:创建一个python脚本fill50k.py根据json文件中的对应关系加载图片,python脚本如下所示,这个脚本中定义一个 Fill50k类,并继承datasets.GeneratorBasedBuilder,在类中重写_info(self),_split_generators(self, dl_manager)和_split_generators(self, dl_manager)这三个方法
- import pandas as pd
- import datasets
- import os
- import logging
-
- # 数据集路径设置
- META_DATA_PATH = "D:\Desktop\workspace\code\loaddataset\\fill50k\\train.jsonl"
- IMAGE_DIR = "D:\Desktop\workspace\code\loaddataset\\fill50k"
- CONDITION_IMAGE_DIR = "D:\Desktop\workspace\code\loaddataset\\fill50k"
-
-
- # 定义数据集中有哪些特征,及其类型
- _FEATURES = datasets.Features(
- {
- "image": datasets.Image(),
- "conditioning_image": datasets.Image(),
- "text": datasets.Value("string"),
- },
- )
-
-
- # 定义数据集
- class Fill50k(datasets.GeneratorBasedBuilder):
- BUILDER_CONFIGS = [datasets.BuilderConfig(name="default", version=datasets.Version("0.0.2"))]
- DEFAULT_CONFIG_NAME = "default"
-
- def _info(self):
- return datasets.DatasetInfo(
- description="None",
- features=_FEATURES,
- supervised_keys=None,
- homepage="None",
- license="None",
- citation="None",
- )
-
- def _split_generators(self, dl_manager):
-
- return [
- datasets.SplitGenerator(
- name=datasets.Split.TRAIN,
- # These kwargs will be passed to _generate_examples
- gen_kwargs={
- "metadata_path": META_DATA_PATH,
- "images_dir": IMAGE_DIR,
- "conditioning_images_dir": CONDITION_IMAGE_DIR,
- },
- ),
- ]
-
- def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):
- metadata = pd.read_json(metadata_path, lines=True)
-
- for _, row in metadata.iterrows():
- text = row["text"]
-
- image_path = row["image"]
- image_path = os.path.join(images_dir, image_path)
-
- # 打开文件错误时直接跳过
- try:
- image = open(image_path, "rb").read()
- except Exception as e:
- logging.error(e)
- continue
-
- conditioning_image_path = os.path.join(
- conditioning_images_dir, row["conditioning_image"]
- )
-
- # 打开文件错误直接跳过
- try:
- conditioning_image = open(conditioning_image_path, "rb").read()
- except Exception as e:
- logging.error(e)
- continue
-
- yield row["image"], {
- "text": text,
- "image": {
- "path": image_path,
- "bytes": image,
- },
- "conditioning_image": {
- "path": conditioning_image_path,
- "bytes": conditioning_image,
- },
- }

load_dataset
加载数据集- dataset = load_dataset(path="D:\Desktop\workspace\code\loaddataset\\fill50k\\fill50k.py",
- cache_dir="D:\Desktop\workspace\code\loaddataset\\fill50k\cache")
- print(dataset)
- print(dataset["train"][0])
输出结果如下- DatasetDict({
- train: Dataset({
- features: ['image', 'conditioning_image', 'text'],
- num_rows: 50000
- })
- })
- {'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=512x512 at 0x1AEA2FF9040>, 'conditioning_image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=512x512 at 0x1AEA2FE2640>, 'text': 'pale golden rod circle with old lace background'}
-
本文参考链接:【torch】HuggingFace的datasets库中load_dataset方法使用_orangerfun的博客-CSDN博客
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。