当前位置:   article > 正文

数据仓库理论与实战

数据仓库理论与实战

数据仓库理论与实战

读者交流群已经开通了,有需要的可以私信进入读者交流群

数据仓库已经是企业的数据竞争的核心了,学好数据仓库对提高自己和找到一份好的工作都至关重要,但是很多人对数仓的印象还是停留在写SQL的层面,其实今天的数仓更像是一个数据平台应用,我们学习的大数据技术其实最终的价值都体现在数据服务上,数仓是数据服务的基石,如果说业界以前还有离线和实时之分的话,那么现在实时数仓的提出与落地,未来数仓将是数据战争的最激烈的战场,一切大数据技术都将为数仓提供服务,也都将在数仓这一环节进行收口。

本专栏主要专注于数仓工具学习、数仓建模以及业务建模、SQL 实战和平台建设,最后以3家公司的数仓建建设和实时数仓作为结尾项目,这份教程有以下特点

  1. 知识体系完善,从数仓的概念、建模、数仓工具的使用、数仓的落地实践都有,还会有很多小案例,例如股票的连续涨停天数计算,最大涨停板的概率计算,会话分析,复杂时间序列匹配等
  2. 使用的技术都是当前企业最常用的技术,版本也是比较新的,不会导致大家看到一个代码,然后一执行发现语法不支持或者废弃掉了
  3. 后续的更新也会很及时,不会说更新了一段时间断更了,在更新完大纲之后,我也会不断完善该系列,不断添加新的知识点
  4. 创作团队都是在企业一线员工,实战多于理论,还有很多经典的面试题,例如拉链表的优化、计算连续登陆、连续增长、最大在线用户数

适合人群

  1. 小白对数仓感兴趣同学
  2. 有数仓经验但是缺乏全面认识的同学

1. 数仓建模

编号文章
1数仓建模—数仓初识
2数仓建模—数仓架构发展史
3数仓建模—数仓建模方法论
4数仓建模—分层建设理论
5数仓建模—数据治理
6数仓建模—指标体系建设
7数仓建模—数据模型
8数仓建模—宽表的设计
9数仓建模—埋点设计与管理
10数仓建模—ID Mapping(上)
11数仓建模—ID Mapping(下)
12数仓建模—OneID落地实践
13数仓建模—数据集成
14数仓建模—元数据管理
15数仓建模—自助分析
16数仓建模—建模工具PDMan(CHINER) 入门介绍
17数仓建模—事实表
18数仓建模—维度表
19数仓建模—数仓建模实战(建模流程/建模工具)
20数仓建模—数据集市(DM)
21数仓建模—总线矩阵
22数仓建模—数据安全
23数仓建模—数据域
24数仓建模—数据质量
25数仓建模—数仓开发规范
26数仓建模—实时数仓架构发展史
27数仓建模—数据地图
28数仓建模—数仓建模和业务建模
29数仓建模—雪花模型和星型模型
30数仓建模—OneData体系
31数仓建模—数据资产管理
32数仓建模—事实表和维度表设计规范
33数仓建模—表设计规范
34数仓建模—数据同步方案设计
35数仓建模—美团DB数据同步到数据仓库的架构与实践
36数仓建模—数据领域常见概念与职位划分
37数仓建模—用户画像
38数仓建模—数据驱动业务
39数仓建模—主数据管理
40数仓建模—数据治理的本质与实践
41数仓建模—用户旅程地图
42数仓建模—数据仓库即服务
43数仓建模—数据安全平台建设实践
44数仓建模—数据水印
45数仓建模—IOTA架构
46数仓建模—美团数据质量监管平台实践
47数仓建模—企业数字化转型
48数仓建模—主题域和主题
49数仓建模—增量数据处理
50数仓建模—数据报表体系搭建
51数仓建模—什么商业智能BI
52数仓建模—数仓建设概论
53数仓建模—AI+BI的解决方案
54数仓建模—建模方法论之范式建模
55数仓建模—数据血缘分析盘活数据资产
56数仓建模—数据中台概论
57数仓建模—数据网格
58数仓建模—建模方法论之实体-关系(Entity-Relationship)建模
59建模方法论之Data Vault 建模

2. 运营数据分析模型

3. 数仓工具

1. Hive
编号分类文章
1基础篇1. 什么是Hive
2基础篇2. Hive的编译安装
3基础篇3. Hive表的基础操作
4基础篇4.Hive数据的组织管理方式
5基础篇5. Hive内部表和外部表
6基础篇6. Hive动态分区
7基础篇7.Hive命令行
8基础篇8. Hive基本数据类型
9基础篇9.Hive复合数据类型
10基础篇10. Hive Streaming
11基础篇11.Hive关键字
12基础篇12.Hive函数大全
13基础篇13.Hive的架构设计
14基础篇14.Hive架构之HiveServer2
15基础篇15.Hive的其他语言调用
16基础篇16.Hive架构服务
17基础篇17.Hive的严格模式和本地模式
18基础篇18.Hive的执行引擎
19基础篇19.Hive视图和物化视图
20基础篇20.Hive UDF
21基础篇21.Hive Metastore
22基础篇22.MetaStore的standalone模式和高可用
23基础篇23.Hive基础之设置变量
24基础篇24.报错后退出执行
25语法篇1. Json 解析
26语法篇2. like rlike regexp
27语法篇3. explode 和 lateral view
28语法篇4. with as和from
29语法篇5.Order by, Sort by ,Dristribute by,Cluster By
30语法篇6.grouping sets
31语法篇7.cube和rollup
32语法篇8.map join、reduce join、smb join
33语法篇9.窗口函数初识 max count sum
34语法篇10.窗口函数row_number、rank、dense_rank
35语法篇11. 窗口函数ntile
36语法篇12.窗口函数first_value和last_value
37语法篇13.窗口函数lead和lag
38语法篇14. 窗口函数cume_dist和 percent_rank
39语法篇15. 窗口函数练习和总结
40语法篇16. Hive语法之抽样
41语法篇17. collect_set 和 collect_list
42语法篇18. 行列转换
43语法篇19.Hive语法之子查询
44语法篇20.Hive语法之物理分组
45语法篇21.Hive语法之复杂json解析处理
46语法篇22.Hive语法之with扩展
47语法篇23.Hive语法之Merge 语句
48语法篇24.Hive语法之join 扩展
49语法篇25.Hive语法之连续full join主键重复
50进阶篇1. Hive进阶之索引
51进阶篇2.Hive进阶之事务初识
52进阶篇3.Hive进阶之事务深度剖析
53进阶篇4.Hive进阶之执行计划
54进阶篇5.Hive进阶之数据存储格式
55进阶篇6.Hive进阶之数据压缩配置与格式
56进阶篇7. Hive进阶之SerDe
57进阶篇8. Hive进阶之权限管理
58进阶篇10.Hive优化指南
59进阶篇11.Hive进阶之优化map任务数量
60进阶篇12.Hive进阶之优化reduce任务数量
61进阶篇13.Hive进阶之优化小文件问题
62进阶篇14.Hive进阶之谓词下推
63进阶篇15.Hive进阶之归档
64进阶篇16. Hiv进阶之MSCK
65进阶篇17.Hive进阶之Hive中的锁
66进阶篇18.各种join 的执行计划
67进阶篇19. InputFormat 和 OutputFormat
68进阶篇20.MultiDelimitSerDe
69进阶篇21. 查询最佳实践
70进阶篇21. Statistics与Analyze Table命令
71进阶篇22. 表设计最佳实践
72进阶篇23.性能优化最佳实践
73源码篇1.源码环境搭建
74源码篇2. cli 模块
75源码篇3.CliDriver
76源码篇4.Beeline/HiveCli
77源码篇5.扩展篇Thrift
78源码篇6.SQL 解析
79源码篇7.SQL解析之Antlr入门
80源码篇8. SQL解析Antlr进阶
81源码篇9.SQL解析的应用SQL优化
82实战篇1.Hive实战之UDF分词
83实战篇2.Hive实战之UDF IP 解析
84实战篇3.Hive实战之UDF SQL 解析
85实战篇4.Hive实战之拉链表
86实战篇5.Hive实战之用户行为记录session分割
87实战篇6.Hive实战之最大连续登陆
88实战篇7.Hive实战之留存分析
89实战篇8.Hive实战之各种join的经典应用
90实战篇9.Hive实战之漏斗分析
91实战篇10.Hive实战之累计计算
92实战篇11.Hive实战之占比同比环比
93实战篇12.Hive实战之自关联经典案例
94实战篇13.Hive实战之日活跃周活跃月活
95实战篇14.Hive实战之full join 经典案例
96实战篇15.Hive实战之UDF外部依赖文件找不到
97实战篇16.Hive实战之对比分析
98实战篇17.Hive实战之事件序列匹配/复杂事件处理
99实战篇18.Hive实战之UDF GIS
100实战篇19.Hive实战之描述性计算
101实战篇20.Hive实战之滑动/滚动时间窗口计算
102实战篇21.Hive实战之UDF 复杂JSON 处理
103实战篇22.Hive实战之UDF汉字首字母
104实战篇23.Hive实战之生成连续序列
105集成篇1.Hive集成篇之ES
106集成篇2.Hive集成篇之ClickHouse
107集成篇3.Hive集成篇之Kafka
108集成篇4.Hive集成篇之UDF写ES
109优化篇1.用户画像亿级数据表关联
110优化篇2.UDAF批量调用外部请求
高性能查询引擎
1.Spark-SQL

1. Spark 初识

2. Spark SQL 初识

3. 股票数据分析

4. 股票打板策略分析

2.Impala
3.Presto
4.Druid
5.Clickhouse
Doris

Doris基础篇—初识

Doris基础篇—安装部署

Doris基础篇—使用场景与特性

Doris基础篇—数据分布Bucket(Tablet)

Doris基础篇—数据分布Partition

Doris基础篇—数据模型Duplicate 模型

Doris 基础篇—数据模型Unique 模型

Doris基础篇—数据模型Aggregate 模型

Doris基础篇— 数据丢失

Doris基础篇—数据集成 Catalog

Doris进阶篇—Flink+Doris 实时数仓

Doris进阶篇—Flink CDC 同步数据到Doris

Doris案例篇—美团外卖数仓中的应用实践

Doris案例篇— 工商信息商业查询平台的湖仓一体建设实践(02)

Doris 案例篇—长安汽车基于 Doris 的车联网数据分析平台建设实践

Doris 案例篇—Doris 如何基于自增列满足高效字典编码等典型场景需求

Doris 案例篇—Doris在日志分析中的应用

Doris案例篇—Doris 在思必驰的应用实践

3.数据集成工具
sqoop

Sqoop

sqoop 2.x

datax

DataX 初识

DataX部署使用

DataX—Web部署使用

DataX 源码改造支持Mysql 8.X

Maxwell

Maxwell 初识

Maxwell 实践应用

SeaTunnel

Apache SeaTunnel 初识

Apache SeaTunnel和SeaTunnel Web

Flink CDC

Flink CDC 初识

Flink CDC 同步数据

dolphinscheduler

dolphinscheduler 的使用

dolphinscheduler 安装部署

4. 数据湖
5. 调度工具
1. 调度工具的使用
2. 调度工具整合

首先我们会创建常用的脚本然后配合配合数仓的SQL 进行数仓的整体的调度,脚本的话我们主要有抽数的脚本、执行SQL的脚本、监控的脚本、发布脚本

当然我们还会引入版本管理工具,管理我们的SQL和脚本,然后进行发布

6. 元数据管理工具
7. 监控工具
8. 报表工具
9. 实时数仓
10. 数据资产

4. 数仓实战

1. K12赛道Top公司的数仓建设案例
2. 知名游戏公司的数仓建设案例
3. 大型支付公司实时数仓建设案例

总结

以hadoop 作为基础生态,从0到进行数仓建设,主要分为基础篇和实战篇两部分,基础篇主要是各种组件的学习和案例,实战篇主要是三家企业的数仓设计案例,最后是扩展篇主要是实时数仓。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/432113
推荐阅读
相关标签
  

闽ICP备14008679号