赞
踩
论文链接:https://arxiv.org/abs/1706.06083
源码出处:https://github.com/Harry24k/adversarial-attacks-pytorch/tree/master
import torch import torch.nn as nn from ..attack import Attack class PGD(Attack): r""" PGD in the paper 'Towards Deep Learning Models Resistant to Adversarial Attacks' [https://arxiv.org/abs/1706.06083] Distance Measure : Linf Arguments: model (nn.Module): model to attack. eps (float): maximum perturbation. (Default: 8/255) alpha (float): step size. (Default: 2/255) steps (int): number of steps. (Default: 10) random_start (bool): using random initialization of delta. (Default: True) Shape: - images: :math:`(N, C, H, W)` where `N = number of batches`, `C = number of channels`, `H = height` and `W = width`. It must have a range [0, 1]. - labels: :math:`(N)` where each value :math:`y_i` is :math:`0 \leq y_i \leq` `number of labels`. - output: :math:`(N, C, H, W)`. Examples:: >>> attack = torchattacks.PGD(model, eps=8/255, alpha=1/255, steps=10, random_start=True) >>> adv_images = attack(images, labels) """ def __init__(self, model, eps=8/255, alpha=2/255, steps=10, random_start=True): super().__init__("PGD", model) self.eps = eps self.alpha = alpha self.steps = steps self.random_start = random_start self.supported_mode = ['default', 'targeted'] def forward(self, images, labels): r""" Overridden. """ self._check_inputs(images) images = images.clone().detach().to(self.device) labels = labels.clone().detach().to(self.device) if self.targeted: target_labels = self.get_target_label(images, labels) loss = nn.CrossEntropyLoss() adv_images = images.clone().detach() if self.random_start: # Starting at a uniformly random point adv_images = adv_images + torch.empty_like(adv_images).uniform_(-self.eps, self.eps) adv_images = torch.clamp(adv_images, min=0, max=1).detach() for _ in range(self.steps): adv_images.requires_grad = True outputs = self.get_logits(adv_images) # Calculate loss if self.targeted: cost = -loss(outputs, target_labels) else: cost = loss(outputs, labels) # Update adversarial images grad = torch.autograd.grad(cost, adv_images, retain_graph=False, create_graph=False)[0] adv_images = adv_images.detach() + self.alpha*grad.sign() delta = torch.clamp(adv_images - images, min=-self.eps, max=self.eps) adv_images = torch.clamp(images + delta, min=0, max=1).detach() return adv_images
PGD算法(projected gradient descent)是在BIM算法的基础上的小改进,二者非常相近,BIM算法的源码解析在上一篇博客中,建议先看上一篇博客理解BIM算法的原理。
具体来说,在BIM算法开始迭代前,就先给图像加上扰动(在 ϵ \epsilon ϵ邻域内均匀分布)。换句话说,也就是图像开始迭代的起点随机,而不是像BIM算法一样从原始图像开始迭代。论文这么做的目的是为了研究从随机的起点开始迭代扰动,损失能够达到的不同的局部最大值的关系。
PGD算法的公式如下所示: X 0 a d v = X + η , X N + 1 a d v = C l i p X , ϵ { X N a d v + α s i g n ( ▽ x J ( X N a d v , y t r u e ) ) } X^{adv}_0=X+\eta,X^{adv}_{N+1}=Clip_{X,\epsilon}\{X^{adv}_N+\alpha sign(\triangledown_{x}J(X^{adv}_N,y_{true}))\} X0adv=X+η,XN+1adv=ClipX,ϵ{XNadv+αsign(▽xJ(XNadv,ytrue))}其中, η \eta η是一个随机扰动,在 ϵ \epsilon ϵ邻域内均匀分布。
eps
:即
ϵ
\epsilon
ϵ,表示最大扰动。
alpha
:即
α
\alpha
α,表示每次迭代中扰动的增加量(或减少量)。
steps
:表示迭代次数。
random_start
:迭代的起点是否随机,也就是是否要加随机扰动
η
\eta
η,若为False
,则该算法就和BIM算法相同。
images = images.clone().detach().to(self.device)
:clone()
将图像克隆到一块新的内存区(pytorch默认同样的tensor共享一块内存区);detach()
是将克隆的新的tensor从当前计算图中分离下来,作为叶节点,从而可以计算其梯度;to()
作用就是将其载入设备。
target_labels = self.get_target_label(images, labels)
:若是有目标攻击的情况,获取目标标签。目标标签的选取有多种方式,例如可以选择与真实标签相差最大的标签,也可以随机选择除真实标签外的标签。
loss = nn.CrossEntropyLoss()
:设置损失函数为交叉熵损失。
adv_images = adv_images + torch.empty_like(adv_images).uniform_(-self.eps, self.eps)
adv_images = torch.clamp(adv_images, min=0, max=1).detach()
以上两行代码作用即为添加随机扰动,torch.empty_like(adv_images)
会返回一个形状同adv_images
的空的Tensor,uniform_(-self.eps, self.eps)
将Tensor中的值在
[
−
ϵ
,
ϵ
]
[-\epsilon,\epsilon]
[−ϵ,ϵ]范围内的均匀分布中随机取值。torch.clamp(adv_images, min=0, max=1)
会将图像中大于1的值设为1、小于0的值设为0,防止超出范围。
adv_images.requires_grad = True
:将requires_grad
参数设置为True
,torch就会在图像的计算过程中自动计算计算图,用于反向梯度计算。
outputs = self.get_logits(images)
:获得图像的在模型中的输出值。
cost = -loss(outputs, target_labels)
:有目标情况下计算损失。
cost = loss(outputs, labels)
:无目标情况下计算损失。
grad = torch.autograd.grad(cost, images, retain_graph=False, create_graph=False)[0]
:cost
对images
求导,得到梯度grad
。
adv_images = images + self.alpha*grad.sign()
:根据公式在图像上沿着梯度上升方向以步长为
α
\alpha
α增加扰动。
delta = torch.clamp(adv_images - images, min=-self.eps, max=self.eps) # 得到改变量
adv_images = torch.clamp(images + delta, min=0, max=1).detach() # 防止图像超出有效范围
以上两行代码就是裁剪的过程,同BIM算法中的 C l i p Clip Clip过程,防止图像超出 [ 0 , 1 ] [0,1] [0,1]范围。
import torch import torch.nn as nn from ..attack import Attack class PGDL2(Attack): r""" PGD in the paper 'Towards Deep Learning Models Resistant to Adversarial Attacks' [https://arxiv.org/abs/1706.06083] Distance Measure : L2 Arguments: model (nn.Module): model to attack. eps (float): maximum perturbation. (Default: 1.0) alpha (float): step size. (Default: 0.2) steps (int): number of steps. (Default: 10) random_start (bool): using random initialization of delta. (Default: True) Shape: - images: :math:`(N, C, H, W)` where `N = number of batches`, `C = number of channels`, `H = height` and `W = width`. It must have a range [0, 1]. - labels: :math:`(N)` where each value :math:`y_i` is :math:`0 \leq y_i \leq` `number of labels`. - output: :math:`(N, C, H, W)`. Examples:: >>> attack = torchattacks.PGDL2(model, eps=1.0, alpha=0.2, steps=10, random_start=True) >>> adv_images = attack(images, labels) """ def __init__(self, model, eps=1.0, alpha=0.2, steps=10, random_start=True, eps_for_division=1e-10): super().__init__("PGDL2", model) self.eps = eps self.alpha = alpha self.steps = steps self.random_start = random_start self.eps_for_division = eps_for_division self.supported_mode = ['default', 'targeted'] def forward(self, images, labels): r""" Overridden. """ self._check_inputs(images) images = images.clone().detach().to(self.device) labels = labels.clone().detach().to(self.device) if self.targeted: target_labels = self.get_target_label(images, labels) loss = nn.CrossEntropyLoss() adv_images = images.clone().detach() batch_size = len(images) if self.random_start: # Starting at a uniformly random point delta = torch.empty_like(adv_images).normal_() d_flat = delta.view(adv_images.size(0), -1) # 将图片矩阵展平,方便计算范数 n = d_flat.norm(p=2, dim=1).view(adv_images.size(0), 1, 1, 1) # 计算每个向量的模长 r = torch.zeros_like(n).uniform_(0, 1) # 随机[0,1]之间均匀分布 delta *= r/n*self.eps # 即将delta向量变为模长为[0,eps]之间的向量 adv_images = torch.clamp(adv_images + delta, min=0, max=1).detach() for _ in range(self.steps): adv_images.requires_grad = True outputs = self.get_logits(adv_images) # Calculate loss if self.targeted: cost = -loss(outputs, target_labels) else: cost = loss(outputs, labels) # Update adversarial images grad = torch.autograd.grad(cost, adv_images, retain_graph=False, create_graph=False)[0] grad_norms = torch.norm(grad.view(batch_size, -1), p=2, dim=1) + self.eps_for_division # 这边加上了self.eps_for_division是为了防止下面除0 grad = grad / grad_norms.view(batch_size, 1, 1, 1) # 使梯度变为单位向量 adv_images = adv_images.detach() + self.alpha * grad # 下面是为了改变后的图像与原图像的L2距离不超过eps delta = adv_images - images delta_norms = torch.norm(delta.view(batch_size, -1), p=2, dim=1) # 计算改变量的模长 factor = self.eps / delta_norms # 如果eps/delta_norms小于1,则说明改变量的L2距离超过了eps # 那么就会在factor与delta相乘的过程中被替换为eps factor = torch.min(factor, torch.ones_like(delta_norms)) delta = delta * factor.view(-1, 1, 1, 1) adv_images = torch.clamp(images + delta, min=0, max=1).detach() return adv_images
PGDL2和PGDLinf的区别就在于度量样本之间的距离的范式不同,假设样本 X = ( x 1 , x 2 , x 3 , . . . , x n ) X=(x_1,x_2,x_3,...,x_n) X=(x1,x2,x3,...,xn),L2范数 ∣ ∣ X ∣ ∣ 2 = x 1 2 + x 2 2 + x 3 2 + . . . + x n 2 ||X||_2=\sqrt{x^2_1+x^2_2+x^2_3+...+x^2_n} ∣∣X∣∣2=x12+x22+x32+...+xn2 ,Linf范数 ∣ ∣ X ∣ ∣ ∞ = x 1 n + x 2 n + x 3 n + . . . + x n n n ||X||_\infty=\sqrt[n]{x^n_1+x^n_2+x^n_3+...+x^n_n} ∣∣X∣∣∞=nx1n+x2n+x3n+...+xnn ,简单来说,L2范数可以理解为向量的模长,Linf范数可以理解为向量中最大元素的值。
二者在源码中的区别可以看我写在代码中的注释。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。