当前位置:   article > 正文

PGD(projected gradient descent)算法源码解析_pgd源代码

pgd源代码

论文链接:https://arxiv.org/abs/1706.06083
源码出处:https://github.com/Harry24k/adversarial-attacks-pytorch/tree/master


PGDLinf源码

import torch
import torch.nn as nn

from ..attack import Attack


class PGD(Attack):
    r"""
    PGD in the paper 'Towards Deep Learning Models Resistant to Adversarial Attacks'
    [https://arxiv.org/abs/1706.06083]

    Distance Measure : Linf

    Arguments:
        model (nn.Module): model to attack.
        eps (float): maximum perturbation. (Default: 8/255)
        alpha (float): step size. (Default: 2/255)
        steps (int): number of steps. (Default: 10)
        random_start (bool): using random initialization of delta. (Default: True)

    Shape:
        - images: :math:`(N, C, H, W)` where `N = number of batches`, `C = number of channels`,        `H = height` and `W = width`. It must have a range [0, 1].
        - labels: :math:`(N)` where each value :math:`y_i` is :math:`0 \leq y_i \leq` `number of labels`.
        - output: :math:`(N, C, H, W)`.

    Examples::
        >>> attack = torchattacks.PGD(model, eps=8/255, alpha=1/255, steps=10, random_start=True)
        >>> adv_images = attack(images, labels)

    """
    def __init__(self, model, eps=8/255,
                 alpha=2/255, steps=10, random_start=True):
        super().__init__("PGD", model)
        self.eps = eps
        self.alpha = alpha
        self.steps = steps
        self.random_start = random_start
        self.supported_mode = ['default', 'targeted']

    def forward(self, images, labels):
        r"""
        Overridden.
        """
        self._check_inputs(images)

        images = images.clone().detach().to(self.device)
        labels = labels.clone().detach().to(self.device)

        if self.targeted:
            target_labels = self.get_target_label(images, labels)

        loss = nn.CrossEntropyLoss()

        adv_images = images.clone().detach()

        if self.random_start:
            # Starting at a uniformly random point
            adv_images = adv_images + torch.empty_like(adv_images).uniform_(-self.eps, self.eps)
            adv_images = torch.clamp(adv_images, min=0, max=1).detach()

        for _ in range(self.steps):
            adv_images.requires_grad = True
            outputs = self.get_logits(adv_images)

            # Calculate loss
            if self.targeted:
                cost = -loss(outputs, target_labels)
            else:
                cost = loss(outputs, labels)

            # Update adversarial images
            grad = torch.autograd.grad(cost, adv_images,
                                       retain_graph=False, create_graph=False)[0]

            adv_images = adv_images.detach() + self.alpha*grad.sign()
            delta = torch.clamp(adv_images - images, min=-self.eps, max=self.eps)
            adv_images = torch.clamp(images + delta, min=0, max=1).detach()

        return adv_images

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80

解析

PGD算法(projected gradient descent)是在BIM算法的基础上的小改进,二者非常相近,BIM算法的源码解析在上一篇博客中,建议先看上一篇博客理解BIM算法的原理。

具体来说,在BIM算法开始迭代前,就先给图像加上扰动(在 ϵ \epsilon ϵ邻域内均匀分布)。换句话说,也就是图像开始迭代的起点随机,而不是像BIM算法一样从原始图像开始迭代。论文这么做的目的是为了研究从随机的起点开始迭代扰动,损失能够达到的不同的局部最大值的关系。

PGD算法的公式如下所示: X 0 a d v = X + η , X N + 1 a d v = C l i p X , ϵ { X N a d v + α s i g n ( ▽ x J ( X N a d v , y t r u e ) ) } X^{adv}_0=X+\eta,X^{adv}_{N+1}=Clip_{X,\epsilon}\{X^{adv}_N+\alpha sign(\triangledown_{x}J(X^{adv}_N,y_{true}))\} X0adv=X+η,XN+1adv=ClipX,ϵ{XNadv+αsign(xJ(XNadv,ytrue))}其中, η \eta η是一个随机扰动,在 ϵ \epsilon ϵ邻域内均匀分布。

eps:即 ϵ \epsilon ϵ,表示最大扰动。
alpha:即 α \alpha α,表示每次迭代中扰动的增加量(或减少量)。
steps:表示迭代次数。
random_start:迭代的起点是否随机,也就是是否要加随机扰动 η \eta η,若为False,则该算法就和BIM算法相同。
images = images.clone().detach().to(self.device)clone()将图像克隆到一块新的内存区(pytorch默认同样的tensor共享一块内存区);detach()是将克隆的新的tensor从当前计算图中分离下来,作为叶节点,从而可以计算其梯度;to()作用就是将其载入设备。
target_labels = self.get_target_label(images, labels):若是有目标攻击的情况,获取目标标签。目标标签的选取有多种方式,例如可以选择与真实标签相差最大的标签,也可以随机选择除真实标签外的标签。
loss = nn.CrossEntropyLoss():设置损失函数为交叉熵损失。

adv_images = adv_images + torch.empty_like(adv_images).uniform_(-self.eps, self.eps)
adv_images = torch.clamp(adv_images, min=0, max=1).detach()
  • 1
  • 2

以上两行代码作用即为添加随机扰动,torch.empty_like(adv_images)会返回一个形状同adv_images的空的Tensor,uniform_(-self.eps, self.eps)将Tensor中的值在 [ − ϵ , ϵ ] [-\epsilon,\epsilon] [ϵ,ϵ]范围内的均匀分布中随机取值。torch.clamp(adv_images, min=0, max=1)会将图像中大于1的值设为1、小于0的值设为0,防止超出范围。
adv_images.requires_grad = True:将requires_grad 参数设置为True,torch就会在图像的计算过程中自动计算计算图,用于反向梯度计算。
outputs = self.get_logits(images):获得图像的在模型中的输出值。
cost = -loss(outputs, target_labels):有目标情况下计算损失。
cost = loss(outputs, labels):无目标情况下计算损失。
grad = torch.autograd.grad(cost, images, retain_graph=False, create_graph=False)[0]costimages求导,得到梯度grad
adv_images = images + self.alpha*grad.sign():根据公式在图像上沿着梯度上升方向以步长为 α \alpha α增加扰动。

delta = torch.clamp(adv_images - images, min=-self.eps, max=self.eps)  # 得到改变量
adv_images = torch.clamp(images + delta, min=0, max=1).detach()  # 防止图像超出有效范围
  • 1
  • 2

以上两行代码就是裁剪的过程,同BIM算法中的 C l i p Clip Clip过程,防止图像超出 [ 0 , 1 ] [0,1] [0,1]范围。


PGDL2源码

import torch
import torch.nn as nn

from ..attack import Attack


class PGDL2(Attack):
    r"""
    PGD in the paper 'Towards Deep Learning Models Resistant to Adversarial Attacks'
    [https://arxiv.org/abs/1706.06083]

    Distance Measure : L2

    Arguments:
        model (nn.Module): model to attack.
        eps (float): maximum perturbation. (Default: 1.0)
        alpha (float): step size. (Default: 0.2)
        steps (int): number of steps. (Default: 10)
        random_start (bool): using random initialization of delta. (Default: True)

    Shape:
        - images: :math:`(N, C, H, W)` where `N = number of batches`, `C = number of channels`,        `H = height` and `W = width`. It must have a range [0, 1].
        - labels: :math:`(N)` where each value :math:`y_i` is :math:`0 \leq y_i \leq` `number of labels`.
        - output: :math:`(N, C, H, W)`.

    Examples::
        >>> attack = torchattacks.PGDL2(model, eps=1.0, alpha=0.2, steps=10, random_start=True)
        >>> adv_images = attack(images, labels)

    """

    def __init__(self, model, eps=1.0, alpha=0.2, steps=10,
                 random_start=True, eps_for_division=1e-10):
        super().__init__("PGDL2", model)
        self.eps = eps
        self.alpha = alpha
        self.steps = steps
        self.random_start = random_start
        self.eps_for_division = eps_for_division
        self.supported_mode = ['default', 'targeted']

    def forward(self, images, labels):
        r"""
        Overridden.
        """
        self._check_inputs(images)

        images = images.clone().detach().to(self.device)
        labels = labels.clone().detach().to(self.device)

        if self.targeted:
            target_labels = self.get_target_label(images, labels)

        loss = nn.CrossEntropyLoss()

        adv_images = images.clone().detach()
        batch_size = len(images)

        if self.random_start:
            # Starting at a uniformly random point
            delta = torch.empty_like(adv_images).normal_()
            d_flat = delta.view(adv_images.size(0), -1)  # 将图片矩阵展平,方便计算范数
            n = d_flat.norm(p=2, dim=1).view(adv_images.size(0), 1, 1, 1)  # 计算每个向量的模长
            r = torch.zeros_like(n).uniform_(0, 1)  # 随机[0,1]之间均匀分布
            delta *= r/n*self.eps  # 即将delta向量变为模长为[0,eps]之间的向量
            adv_images = torch.clamp(adv_images + delta, min=0, max=1).detach()

        for _ in range(self.steps):
            adv_images.requires_grad = True
            outputs = self.get_logits(adv_images)

            # Calculate loss
            if self.targeted:
                cost = -loss(outputs, target_labels)
            else:
                cost = loss(outputs, labels)

            # Update adversarial images
            grad = torch.autograd.grad(cost, adv_images,
                                       retain_graph=False, create_graph=False)[0]
            grad_norms = torch.norm(grad.view(batch_size, -1), p=2, dim=1) + self.eps_for_division  # 这边加上了self.eps_for_division是为了防止下面除0
            grad = grad / grad_norms.view(batch_size, 1, 1, 1)  # 使梯度变为单位向量
            adv_images = adv_images.detach() + self.alpha * grad
			
			# 下面是为了改变后的图像与原图像的L2距离不超过eps
            delta = adv_images - images
            delta_norms = torch.norm(delta.view(batch_size, -1), p=2, dim=1)  # 计算改变量的模长
            factor = self.eps / delta_norms
            # 如果eps/delta_norms小于1,则说明改变量的L2距离超过了eps
            # 那么就会在factor与delta相乘的过程中被替换为eps
            factor = torch.min(factor, torch.ones_like(delta_norms))
            delta = delta * factor.view(-1, 1, 1, 1)

            adv_images = torch.clamp(images + delta, min=0, max=1).detach()

        return adv_images
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96

解析

PGDL2和PGDLinf的区别就在于度量样本之间的距离的范式不同,假设样本 X = ( x 1 , x 2 , x 3 , . . . , x n ) X=(x_1,x_2,x_3,...,x_n) X=(x1,x2,x3,...,xn),L2范数 ∣ ∣ X ∣ ∣ 2 = x 1 2 + x 2 2 + x 3 2 + . . . + x n 2 ||X||_2=\sqrt{x^2_1+x^2_2+x^2_3+...+x^2_n} ∣∣X2=x12+x22+x32+...+xn2 ,Linf范数 ∣ ∣ X ∣ ∣ ∞ = x 1 n + x 2 n + x 3 n + . . . + x n n n ||X||_\infty=\sqrt[n]{x^n_1+x^n_2+x^n_3+...+x^n_n} ∣∣X=nx1n+x2n+x3n+...+xnn ,简单来说,L2范数可以理解为向量的模长,Linf范数可以理解为向量中最大元素的值。

二者在源码中的区别可以看我写在代码中的注释。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/508460
推荐阅读
相关标签
  

闽ICP备14008679号