赞
踩
本篇通过一张图和七段代码详细说明系统调用的整个过程,代码一捅到底,直到汇编层再也捅不下去.
先看图,这里的模式可以理解为空间,因为模式不同运行的栈空间就不一样.
过程解读
main
中使用系统调用mq_open
(posix标准接口)mq_open
被封装在库中,这里直接看库里的代码.mq_open
中调用syscall
,将参数传给寄出器 R7,R0~R6
SVC 0
完成用户模式到内核模式(SVC)的切换_osExceptSwiHdl
运行在svc模式下._osExceptSwiHdl
处取指令._osExceptSwiHdl
是汇编代码,先保存用户模式现场(R0~R12寄存器),并调用OsArmA32SyscallHandle
完成系统调用OsArmA32SyscallHandle
中通过系统调用号(保存在R7寄存器)查询对应的注册函数SYS_mq_open
SYS_mq_open
是本次系统调用的实现函数,完成后return回到OsArmA32SyscallHandle
OsArmA32SyscallHandle
再return回到_osExceptSwiHdl
_osExceptSwiHdl
恢复用户模式现场(R0~R12寄存器)int main(void) { char mqname[NAMESIZE], msgrv1[BUFFER], msgrv2[BUFFER]; const char *msgptr1 = "test message1"; const char *msgptr2 = "test message2 with differnet length"; mqd_t mqdes; int prio1 = 1, prio2 = 2; struct timespec ts; struct mq_attr attr; int unresolved = 0, failure = 0; sprintf(mqname, "/" FUNCTION "_" TEST "_%d", getpid()); attr.mq_msgsize = BUFFER; attr.mq_maxmsg = BUFFER; mqdes = mq_open(mqname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR, &attr); if (mqdes == (mqd_t)-1) { perror(ERROR_PREFIX "mq_open"); unresolved = 1; } if (mq_send(mqdes, msgptr1, strlen(msgptr1), prio1) != 0) { perror(ERROR_PREFIX "mq_send"); unresolved = 1; } printf("Test PASSED\n"); return PTS_PASS; }
mqd_t mq_open(const char *name, int flags, ...)
{
mode_t mode = 0;
struct mq_attr *attr = 0;
if (*name == '/') name++;
if (flags & O_CREAT) {
va_list ap;
va_start(ap, flags);
mode = va_arg(ap, mode_t);
attr = va_arg(ap, struct mq_attr *);
va_end(ap);
}
return syscall(SYS_mq_open, name, flags, mode, attr);
}
解读
SYS_mq_open
是真正的系统调用函数,对应一个系统调用号__NR_mq_open
,通过宏SYSCALL_HAND_DE
F将SysMqOpen
注册到g_syscallHandle
中.static UINTPTR g_syscallHandle[SYS_CALL_NUM] = {0}; //系统调用入口函数注册
static UINT8 g_syscallNArgs[(SYS_CALL_NUM + 1) / NARG_PER_BYTE] = {0};//保存系统调用对应的参数数量
#define SYSCALL_HAND_DEF(id, fun, rType, nArg) \
if ((id) < SYS_CALL_NUM) { \
g_syscallHandle[(id)] = (UINTPTR)(fun); \
g_syscallNArgs[(id) / NARG_PER_BYTE] |= ((id) & 1) ? (nArg) << NARG_BITS : (nArg); \
} \
#include "syscall_lookup.h"
#undef SYSCALL_HAND_DEF
SYSCALL_HAND_DEF(__NR_mq_open, SysMqOpen, mqd_t, ARG_NUM_4)
g_syscallNArgs
为注册函数的参数个数,也会一块记录下来.long syscall(long n, ...) { va_list ap; syscall_arg_t a,b,c,d,e,f; va_start(ap, n); a=va_arg(ap, syscall_arg_t); b=va_arg(ap, syscall_arg_t); c=va_arg(ap, syscall_arg_t); d=va_arg(ap, syscall_arg_t); e=va_arg(ap, syscall_arg_t); f=va_arg(ap, syscall_arg_t);//最多6个参数 va_end(ap); return __syscall_ret(__syscall(n,a,b,c,d,e,f)); } //4个参数的系统调用时底层处理 static inline long __syscall4(long n, long a, long b, long c, long d) { register long a7 __asm__("a7") = n; //将系统调用号保存在R7寄存器 register long a0 __asm__("a0") = a; //R0 register long a1 __asm__("a1") = b; //R1 register long a2 __asm__("a2") = c; //R2 register long a3 __asm__("a3") = d; //R3 __asm_syscall("r"(a7), "0"(a0), "r"(a1), "r"(a2), "r"(a3)) }
解读
//切到SVC模式
#define __asm_syscall(...) do { \
__asm__ __volatile__ ( "svc 0" \
: "=r"(x0) : __VA_ARGS__ : "memory", "cc"); \
return x0; \
} while (0)
看不太懂的没关系,这里我们只需要记住:系统调用号存放在r7寄存器,参数存放在r0,r1,r2寄存器中,返回值最终会存放在寄存器r0中
b reset_vector @开机代码
b _osExceptUndefInstrHdl @异常处理之CPU碰到不认识的指令
b _osExceptSwiHdl @异常处理之:软中断
b _osExceptPrefetchAbortHdl @异常处理之:取指异常
b _osExceptDataAbortHdl @异常处理之:数据异常
b _osExceptAddrAbortHdl @异常处理之:地址异常
b OsIrqHandler @异常处理之:硬中断
b _osExceptFiqHdl @异常处理之:快中断
解读
svc
全称是 SuperVisor Call,完成工作模式的切换.不管之前是7个模式中的哪个模式,统一都切到SVC
管理模式.但你也许会好奇,ARM软中断不是用SWI
吗,这里怎么变成了SVC
了,请看下面一段话,是从ARM官网翻译的:
SVC
超级用户调用。
语法
SVC{cond} #immed
其中:
cond
是一个可选的条件代码(请参阅条件执行)。
immed
是一个表达式,其取值为以下范围内的一个整数:
在 ARM 指令中为 0 到 224–1(24 位值)
在 16 位 Thumb 指令中为 0-255(8 位值)。
用法
SVC 指令会引发一个异常。 这意味着处理器模式会更改为超级用户模式,CPSR 会保存到超级用户模式 SPSR,并且执行会跳转到 SVC 向量(请参阅《开发指南》中的第 6 章 处理处理器异常)。
处理器会忽略 immed。 但异常处理程序会获取它,借以确定所请求的服务。
Note
作为 ARM 汇编语言开发成果的一部分,SWI 指令已重命名为 SVC。 在此版本的 RVCT 中,SWI 指令反汇编为 SVC,并提供注释以指明这是以前的 SWI。
条件标记
此指令不更改标记。
体系结构
此 ARM 指令可用于所有版本的 ARM 体系结构。
而软中断对应的处理函数为 _osExceptSwiHdl
,即PC寄存器将跳到_osExceptSwiHdl
执行
@ Description: Software interrupt exception handler _osExceptSwiHdl: @软中断异常处理 @保存任务上下文(TaskContext) 开始... 一定要对照TaskContext来理解 SUB SP, SP, #(4 * 16) @先申请16个栈空间用于处理本次软中断 STMIA SP, {R0-R12} @TaskContext.R[GEN_REGS_NUM] STMIA从左到右执行,先放R0 .. R12 MRS R3, SPSR @读取本模式下的SPSR值 MOV R4, LR @保存回跳寄存器LR AND R1, R3, #CPSR_MASK_MODE @ Interrupted mode 获取中断模式 CMP R1, #CPSR_USER_MODE @ User mode 是否为用户模式 BNE OsKernelSVCHandler @ Branch if not user mode 非用户模式下跳转 @ 当为用户模式时,获取SP和LR寄出去值 @ we enter from user mode, we need get the values of USER mode r13(sp) and r14(lr). @ stmia with ^ will return the user mode registers (provided that r15 is not in the register list). MOV R0, SP @获取SP值,R0将作为OsArmA32SyscallHandle的参数 STMFD SP!, {R3} @ Save the CPSR 入栈保存CPSR值 => TaskContext.regPSR ADD R3, SP, #(4 * 17) @ Offset to pc/cpsr storage 跳到PC/CPSR存储位置 STMFD R3!, {R4} @ Save the CPSR and r15(pc) 保存LR寄存器 => TaskContext.PC STMFD R3, {R13, R14}^ @ Save user mode r13(sp) and r14(lr) 从右向左 保存 => TaskContext.LR和SP SUB SP, SP, #4 @ => TaskContext.resved PUSH_FPU_REGS R1 @保存中断模式(用户模式模式) @保存任务上下文(TaskContext) 结束 MOV FP, #0 @ Init frame pointer CPSIE I @开中断,表明在系统调用期间可响应中断 BLX OsArmA32SyscallHandle /*交给C语言处理系统调用,参数为R0,指向TaskContext的开始位置*/ CPSID I @执行后续指令前必须先关中断 @恢复任务上下文(TaskContext) 开始 POP_FPU_REGS R1 @弹出FP值给R1 ADD SP, SP,#4 @ 定位到保存旧SPSR值的位置 LDMFD SP!, {R3} @ Fetch the return SPSR 弹出旧SPSR值 MSR SPSR_cxsf, R3 @ Set the return mode SPSR 恢复该模式下的SPSR值 @ we are leaving to user mode, we need to restore the values of USER mode r13(sp) and r14(lr). @ ldmia with ^ will return the user mode registers (provided that r15 is not in the register list) LDMFD SP!, {R0-R12} @恢复R0-R12寄存器 LDMFD SP, {R13, R14}^ @ Restore user mode R13/R14 恢复用户模式的R13/R14寄存器 ADD SP, SP, #(2 * 4) @定位到保存旧PC值的位置 LDMFD SP!, {PC}^ @ Return to user 切回用户模式运行 @恢复任务上下文(TaskContext) 结束 OsKernelSVCHandler:@主要目的是保存ExcContext中除(R0~R12)的其他寄存器 ADD R0, SP, #(4 * 16) @跳转到保存PC,LR,SP的位置,此时R0位置刚好是SP的位置 MOV R5, R0 @由R5记录SP位置,因为R0要暂时充当SP寄存器来使用 STMFD R0!, {R4} @ Store PC => ExcContext.PC STMFD R0!, {R4} @ 相当于保存了=> ExcContext.LR STMFD R0!, {R5} @ 相当于保存了=> ExcContext.SP STMFD SP!, {R3} @ Push task`s CPSR (i.e. exception SPSR). =>ExcContext.regPSR SUB SP, SP, #(4 * 2) @ user sp and lr => =>ExcContext.USP,ULR MOV R0, #OS_EXCEPT_SWI @ Set exception ID to OS_EXCEPT_SWI. @ 设置异常ID为软中断 B _osExceptionSwi @ Branch to global exception handler. @ 跳到全局异常处理
解读
MOV R0, SP
;sp将作为参数传递给OsArmA32SyscallHandle
OsArmA32SyscallHandle
这是所有系统调用的统一入口OsArmA32SyscallHandle
的参数 UINT32 *regs
/* The SYSCALL ID is in R7 on entry. Parameters follow in R0..R6 */ /****************************************************************** 由汇编调用,见于 los_hw_exc.s / BLX OsArmA32SyscallHandle SYSCALL是产生系统调用时触发的信号,R7寄存器存放具体的系统调用ID,也叫系统调用号 regs:参数就是所有寄存器 注意:本函数在用户态和内核态下都可能被调用到 //MOV R0, SP @获取SP值,R0将作为OsArmA32SyscallHandle的参数 ******************************************************************/ LITE_OS_SEC_TEXT UINT32 *OsArmA32SyscallHandle(UINT32 *regs) { UINT32 ret; UINT8 nArgs; UINTPTR handle; UINT32 cmd = regs[REG_R7];//C7寄存器记录了触发了具体哪个系统调用 if (cmd >= SYS_CALL_NUM) {//系统调用的总数 PRINT_ERR("Syscall ID: error %d !!!\n", cmd); return regs; } if (cmd == __NR_sigreturn) {//收到 __NR_sigreturn 信号 OsRestorSignalContext(regs);//恢复信号上下文 return regs; } handle = g_syscallHandle[cmd];//拿到系统调用的注册函数,类似 SysRead nArgs = g_syscallNArgs[cmd / NARG_PER_BYTE]; /* 4bit per nargs */ nArgs = (cmd & 1) ? (nArgs >> NARG_BITS) : (nArgs & NARG_MASK);//获取参数个数 if ((handle == 0) || (nArgs > ARG_NUM_7)) {//系统调用必须有参数且参数不能大于8个 PRINT_ERR("Unsupport syscall ID: %d nArgs: %d\n", cmd, nArgs); regs[REG_R0] = -ENOSYS; return regs; } //regs[0-6] 记录系统调用的参数,这也是由R7寄存器保存系统调用号的原因 switch (nArgs) {//参数的个数 case ARG_NUM_0: case ARG_NUM_1: ret = (*(SyscallFun1)handle)(regs[REG_R0]);//执行系统调用,类似 SysUnlink(pathname); break; case ARG_NUM_2://如何是两个参数的系统调用,这里传三个参数也没有问题,因被调用函数不会去取用R2值 case ARG_NUM_3: ret = (*(SyscallFun3)handle)(regs[REG_R0], regs[REG_R1], regs[REG_R2]);//类似 SysExecve(fileName, argv, envp); break; case ARG_NUM_4: case ARG_NUM_5: ret = (*(SyscallFun5)handle)(regs[REG_R0], regs[REG_R1], regs[REG_R2], regs[REG_R3], regs[REG_R4]); break; default: //7个参数的情况 ret = (*(SyscallFun7)handle)(regs[REG_R0], regs[REG_R1], regs[REG_R2], regs[REG_R3], regs[REG_R4], regs[REG_R5], regs[REG_R6]); } regs[REG_R0] = ret;//R0保存系统调用返回值 OsSaveSignalContext(regs);//保存信号上下文现场 /* Return the last value of curent_regs. This supports context switches on return from the exception. * That capability is only used with theSYS_context_switch system call. */ return regs;//返回寄存器的值 }
解读
regs
对应的就是R0~RnSysMqOpen
的四个参数g_syscallHandle[cmd]
就能查询到 SYSCALL_HAND_DEF(__NR_mq_open, SysMqOpen, mqd_t, ARG_NUM_4)
注册时对应的 SysMqOpen
函数*(SyscallFun5)handle
此时就是SysMqOpen
main
函数中的mqdes = mq_open(mqname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR, &attr);
mqd_t SysMqOpen(const char *mqName, int openFlag, mode_t mode, struct mq_attr *attr) { mqd_t ret; int retValue; char kMqName[PATH_MAX + 1] = { 0 }; retValue = LOS_StrncpyFromUser(kMqName, mqName, PATH_MAX); if (retValue < 0) { return retValue; } ret = mq_open(kMqName, openFlag, mode, attr);//一个消息队列可以有多个进程向它读写消息 if (ret == -1) { return (mqd_t)-get_errno(); } return ret; }
解读
mq_open
和main函数的mq_open
其实是两个函数体实现.一个是给应用层的调用,一个是内核层使用,只是名字一样而已.SysMqOpen
是返回到 OsArmA32SyscallHandle
regs[REG_R0] = ret;
OsArmA32SyscallHandle
再返回到 _osExceptSwiHdl
_osExceptSwiHdl
后面的代码是用于恢复用户模式现场和SPSR
,PC
等寄存器.以上为鸿蒙系统调用的整个过程.
也为了积极培养鸿蒙生态人才,让大家都能学习到鸿蒙开发最新的技术,针对一些在职人员、0基础小白、应届生/计算机专业、鸿蒙爱好者等人群,整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线【包含了大厂APP实战项目开发】。
gitee.com/MNxiaona/733GH
https://gitee.com/MNxiaona/733GH
1.基本概念
2.构建第一个ArkTS应用
3.……
gitee.com/MNxiaona/733GH
1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……
1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……
gitee.com/MNxiaona/733GH
gitee.com/MNxiaona/733GH
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。