当前位置:   article > 正文

Transformer模型 | Python实现基于LSTM与Transfomer的股票预测模型(pytorch)_transformer lstm python

transformer lstm python


效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

文章概述

基于LSTM与Transfomer的股票预测模型

股票行情是引导交易市场变化的一大重要因素,若能够掌握股票行情的走势,则对于个人和企业的投资都有巨大的帮助。然而,股票走势会受到多方因素的影响,因此难以从影响因素入手定量地进行衡量。但如今,借助于机器学习,可以通过搭建网络,学习一定规模的股票数据,通过网络训练,获取一个能够较为准确地预测股票行情的模型,很大程度地帮助我们掌握股票的走势。本项目便搭建了**LSTM(长短期记忆网络)**成功地预测了股票的走势。

训练模型及结果方面,我们首先采用了LSTM(长短期记忆网络),它相比传统的神经网络能够保持上下文信息,更有利于股票预测模型基于原先的行情,预测未来的行情。LSTM网络帮助我们得到了很好的拟合结果,loss很快趋于0。之后,我们又采用比LSTM模型更新提出的Transformer Encoder部分进行测试。但发现,结果并没有LSTM优越,曲线拟合的误差较大&#

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/717294
推荐阅读
相关标签
  

闽ICP备14008679号