手写数字是32x32的黑白图像。为了能使用KNN分类器,我们需要把32x32的二进制图像转换为1x1024
1. 将图像转化为向量
from numpy import * # 导入科学计算包numpy和运算符模块operator import operator from os import listdir
def img2vector(filename): """ 将图像数据转换为向量 :param filename: 图片文件 因为我们的输入数据的图片格式是 32 * 32的 :return: 一维矩阵 该函数将图像转换为向量:该函数创建 1 * 1024 的NumPy数组,然后打开给定的文件, 循环读出文件的前32行,并将每行的头32个字符值存储在NumPy数组中,最后返回数组。 """ returnVect = zeros((1, 1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0, 32 * i + j] = int(lineStr[j]) return returnVect
测试:
testVector = img2vector('F:/迅雷下载/machinelearninginaction/Ch02/testDigits/0_13.txt') testVector[0, 0:31]
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
2. KNN分类器
def classify0(inX, dataSet, labels, k): """ inX: 用于分类的输入向量 dataSet: 输入的训练样本集 labels: 标签向量 k: 选择最近邻居的数目 注意:labels元素数目和dataSet行数相同;程序使用欧式距离公式. """ # 求出数据集的行数 dataSetSize = dataSet.shape[0] # tile生成和训练样本对应的矩阵,并与训练样本求差 """ tile: 列: 3表示复制的行数, 行:1/2 表示对inx的重复的次数 例:In []: inX = [1, 2, 3] tile(inx, (3, 1)) Out[]: array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) """ # 用inx(输入向量)生成和dataSet类型一样的矩阵,在减去dataSet diffMat = tile(inX, (dataSetSize, 1)) - dataSet # 取平方 sqDiffMat = diffMat ** 2 # 将矩阵的每一行相加 sqDistances = sqDiffMat.sum(axis=1) # 开方 distances = sqDistances ** 0.5 # 根据距离排序从小到大的排序,返回对应的索引位置 # argsort() 是将x中的元素从小到大排列,提取其对应的index(索引),然后输出到y。 """ In [] : y = argsort([3, 0, 2, -1, 4, 5]) print(y[0]) print(y[5]) Out[] : 3 5 由于最小的数是-1,它的序号是3,因此y[0] = 3, 最大的数是5,它的序号是5,因此y[5] = 5 """ sortedDistIndicies = distances.argsort() # 2. 选择距离最小的k个点 classCount = {} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
3. 手写数字识别系统的测试代码
def handwritingClassTest(): # 1. 导入数据 hwLabels = [] trainingFileList = listdir('F:/迅雷下载/machinelearninginaction/Ch02/trainingDigits') # load the training set m = len(trainingFileList) trainingMat = zeros((m, 1024)) # hwLabels存储0~9对应的index位置, trainingMat存放的每个位置对应的图片向量 for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] # take off .txt classNumStr = int(fileStr.split('_')[0]) hwLabels.append(classNumStr) # 将 32*32的矩阵->1*1024的矩阵 trainingMat[i, :] = img2vector('F:/迅雷下载/machinelearninginaction/Ch02/trainingDigits/%s' % fileNameStr) # 2. 导入测试数据 testFileList = listdir('F:/迅雷下载/machinelearninginaction/Ch02/testDigits') # iterate through the test set errorCount = 0.0 mTest = len(testFileList) for i in range(mTest): fileNameStr = testFileList[i] fileStr = fileNameStr.split('.')[0] # take off .txt classNumStr = int(fileStr.split('_')[0]) vectorUnderTest = img2vector('F:/迅雷下载/machinelearninginaction/Ch02/testDigits/%s' % fileNameStr) classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)) if (classifierResult != classNumStr): errorCount += 1.0 print("\nthe total number of errors is: %d" % errorCount) print("\nthe total error rate is: %f" % (errorCount / float(mTest)))
handwritingClassTest()
the classifier came back with: 0, the real answer is: 0 the classifier came back with: 0, the real answer is: 0
...
the classifier came back with: 9, the real answer is: 9 the classifier came back with: 9, the real answer is: 9 the total number of errors is: 10 the total error rate is: 0.010571
k-近邻算法识别手写数字,错误率在1.1%.改变k的值、修改函数 handwritingClassTest 随机选取训练样本、改变训练样本的数目,都会对k-近邻算法的错误率产生影响。
实际上,这个算法的执行效率并不高。因为每个算法需要为每个测试向量做2000次距离计算,每个距离计算包括了1024个维度浮点运算,总计执行900次。
而K决策树就是k-近邻的优化版。
4. 总结
k-近邻算法的特点:
1. 是分类数据最简单最有效的算法
2. 必须保存全部数据集,会使用大量存储空间
3. 必须对每个数据计算距离值,非常耗时