赞
踩
Qwen2是通义千问团队最近开源的大语言模型,由阿里云通义实验室研发。
以Qwen2作为基座大模型,通过指令微调的方式做高精度的命名实体识别(NER),是学习入门LLM微调、建立大模型认知的非常好的任务。
使用LoRA方法训练,1.5B模型对显存要求不高,10GB左右就可以跑。
在本文中,我们会使用 Qwen2-1.5b-Instruct 模型在 中文NER 数据集上做指令微调训练,同时使用SwanLab监控训练过程、评估模型效果。
大模型指令微调(Instruction Tuning)是一种针对大型预训练语言模型的微调技术,其核心目的是增强模型理解和执行特定指令的能力,使模型能够根据用户提供的自然语言指令准确、恰当地生成相应的输出或执行相关任务。
指令微调特别关注于提升模型在遵循指令方面的一致性和准确性,从而拓宽模型在各种应用场景中的泛化能力和实用性。
在实际应用中,我的理解是,指令微调更多把LLM看作一个更智能、更强大的传统NLP模型(比如Bert),来实现更高精度的NLP任务。所以这类任务的应用场景覆盖了以往NLP模型的场景,甚至很多团队拿它来标注互联网数据。
命名实体识别 (NER) 是一种NLP技术,主要用于识别和分类文本中提到的重要信息(关键词)。这些实体可以是人名、地名、机构名、日期、时间、货币值等等。 NER 的目标是将文本中的非结构化信息转换为结构化信息,以便计算机能够更容易地理解和处理。
NER 也是一项非常实用的技术,包括在互联网数据标注、搜索引擎、推荐系统、知识图谱、医疗保健等诸多领域有广泛应用。
本案例基于Python>=3.8
,请在您的计算机上安装好Python,并且有一张英伟达显卡(显存要求并不高,大概10GB左右就可以跑)。
我们需要安装以下这几个Python库,在这之前,请确保你的环境内已安装好了pytorch以及CUDA:
swanlab
modelscope
transformers
datasets
peft
accelerate
pandas
一键安装命令:
pip install swanlab modelscope transformers datasets peft pandas accelerate
本案例测试于modelscope1.14.0、transformers4.41.2、datasets2.18.0、peft0.11.1、accelerate0.30.1、swanlab0.3.11
本案例使用的是HuggingFace上的chinese_ner_sft数据集,该数据集主要被用于训练命名实体识别模型。
chinese_ner_sft由不同来源、不同类型的几十万条数据组成,应该是我见过收录最齐全的中文NER数据集。
这次训练我们不需要用到它的全部数据,只取其中的CCFBDCI数据集(中文命名实体识别算法鲁棒性评测数据集)进行训练,该数据集包含LOC(地点)、GPE(地理)、ORG(组织)和PER(人名)四种实体类型标注,每条数据的例子如下:
{ "text": "今天亚太经合组织第十二届部长级会议在这里开幕,中国外交部部长唐家璇、外经贸部部长石广生出席了会议。", "entities": [ { "start_idx": 23, "end_idx": 25, "entity_text": "中国", "entity_label": "GPE", "entity_names": ["地缘政治实体", "政治实体", "地理实体", "社会实体"]}, { "start_idx": 25, "end_idx": 28, "entity_text": "外交部", "entity_label": "ORG", "entity_names": ["组织", "团体", "机构"] }, { "start_idx": 30, "end_idx": 33, "entity_text": "唐家璇", "entity_label": "PER", "entity_names": ["人名", "姓名"] }, ... ], "data_source": "CCFBDCI" }
其中text
是输入的文本,entities
是文本抽取出的实体。我们的目标是希望微调后的大模型能够根据由text
组成的提示词,预测出一个json格式的实体信息:
输入:今天亚太经合组织第十二届部长级会议在这里开幕,中国外交部部长唐家璇、外经贸部部长石广生出席了会议。
大模型输出:{"entity_text":"中国", "entity_label":"组织"}{"entity_text":"唐家璇", "entity_label":"人名"}...
现在我们将数据集下载到本地目录。下载方式是前往chinese_ner_sft - huggingface下载ccfbdci.jsonl
到项目根目录下即可:
这里我们使用modelscope下载Qwen2-1.5B-Instruct模型(modelscope在国内,所以直接用下面的代码自动下载即可,不用担心速度和稳定性问题),然后把它加载到Transformers中进行训练:
from modelscope import snapshot_download, AutoTokenizer
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq
model_id = "qwen/Qwen2-1.5B-Instruct"
model_dir = "./qwen/Qwen2-1___5B-Instruct"
# 在modelscope上下载Qwen模型到本地目录下
model_dir = snapshot_download(model_id, cache_dir="./", revision="master")
# Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.bfloat16)
model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法
我们使用SwanLab来监控整个训练过程,并评估最终的模型效果。
这里直接使用SwanLab和Transformers的集成来实现:
from swanlab.integration.huggingface import SwanLabCallback
swanlab_callback = SwanLabCallback(...)
trainer = Trainer(
...
callbacks=[swanlab_callback],
)
如果你是第一次使用SwanLab,那么还需要去https://swanlab.cn上注册一个账号,在用户设置页面复制你的API Key,然后在训练开始时粘贴进去即可:
开始训练时的目录结构:
|--- train.py
|--- ccfbdci.jsonl
train.py:
import json import pandas as pd import torch from datasets import Dataset from modelscope import snapshot_download, AutoTokenizer from swanlab.integration.huggingface import SwanLabCallback from peft import LoraConfig, TaskType, get_peft_model from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq import os import swanlab def dataset_jsonl_transfer(origin_path, new_path): """ 将原始数据集转换为大模型微调所需数据格式的新数据集 """ messages = [] # 读取旧的JSONL文件 with open(origin_path, "r") as file: for line in file: # 解析每一行的json数据 data = json.loads(line) input_text = data["text"] entities = data["entities"] match_names = ["地点", "人名", "地理实体", "组织"] entity_sentence = "" for entity in entities: entity_json = dict(entity) entity_text = entity_json["entity_text"] entity_names = entity_json["entity_names"] for name in entity_names: if name in match_names: entity_label = name break entity_sentence += f"""{{"entity_text": "{entity_text}", "entity_label": "{entity_label}"}}""" if entity_sentence == "": entity_sentence = "没有找到任何实体" message = { "instruction": """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如 {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体". """, "input": f"文本:{input_text}", "output": entity_sentence, } messages.append(message) # 保存重构后的JSONL文件 with open(new_path, "w", encoding="utf-8") as file: for message in messages: file.write(json.dumps(message, ensure_ascii=False) + "\n") def process_func(example): """ 将数据集进行预处理 """ MAX_LENGTH = 384 input_ids, attention_mask, labels = [], [], [] system_prompt = """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如 {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体".""" instruction = tokenizer( f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{example['input']}<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False, ) response = tokenizer(f"{example['output']}", add_special_tokens=False) input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id] attention_mask = ( instruction["attention_mask"] + response["attention_mask"] + [1] ) labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id] if len(input_ids) > MAX_LENGTH: # 做一个截断 input_ids = input_ids[:MAX_LENGTH] attention_mask = attention_mask[:MAX_LENGTH] labels = labels[:MAX_LENGTH] return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} def predict(messages, model, tokenizer): device = "cuda" text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) return response model_id = "qwen/Qwen2-1.5B-Instruct" model_dir = "./qwen/Qwen2-1___5B-Instruct" # 在modelscope上下载Qwen模型到本地目录下 model_dir = snapshot_download(model_id, cache_dir="./", revision="master") # Transformers加载模型权重 tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.bfloat16) model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法 # 加载、处理数据集和测试集 train_dataset_path = "ccfbdci.jsonl" train_jsonl_new_path = "ccf_train.jsonl" if not os.path.exists(train_jsonl_new_path): dataset_jsonl_transfer(train_dataset_path, train_jsonl_new_path) # 得到训练集 total_df = pd.read_json(train_jsonl_new_path, lines=True) train_df = total_df[int(len(total_df) * 0.1):] train_ds = Dataset.from_pandas(train_df) train_dataset = train_ds.map(process_func, remove_columns=train_ds.column_names) config = LoraConfig( task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], inference_mode=False, # 训练模式 r=8, # Lora 秩 lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理 lora_dropout=0.1, # Dropout 比例 ) model = get_peft_model(model, config) args = TrainingArguments( output_dir="./output/Qwen2-NER", per_device_train_batch_size=4, per_device_eval_batch_size=4, gradient_accumulation_steps=4, logging_steps=10, num_train_epochs=2, save_steps=100, learning_rate=1e-4, save_on_each_node=True, gradient_checkpointing=True, report_to="none", ) swanlab_callback = SwanLabCallback( project="Qwen2-NER-fintune", experiment_name="Qwen2-1.5B-Instruct", description="使用通义千问Qwen2-1.5B-Instruct模型在NER数据集上微调,实现关键实体识别任务。", config={ "model": model_id, "model_dir": model_dir, "dataset": "qgyd2021/chinese_ner_sft", }, ) trainer = Trainer( model=model, args=args, train_dataset=train_dataset, data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True), callbacks=[swanlab_callback], ) trainer.train() # 用测试集的随机20条,测试模型 # 得到测试集 test_df = total_df[:int(len(total_df) * 0.1)].sample(n=20) test_text_list = [] for index, row in test_df.iterrows(): instruction = row['instruction'] input_value = row['input'] messages = [ {"role": "system", "content": f"{instruction}"}, {"role": "user", "content": f"{input_value}"} ] response = predict(messages, model, tokenizer) messages.append({"role": "assistant", "content": f"{response}"}) result_text = f"{messages[0]}\n\n{messages[1]}\n\n{messages[2]}" test_text_list.append(swanlab.Text(result_text, caption=response)) swanlab.log({"Prediction": test_text_list}) swanlab.finish()
看到下面的进度条即代表训练开始:
在SwanLab上查看最终的训练结果:
可以看到在2个epoch之后,微调后的qwen2的loss降低到了不错的水平——当然对于大模型来说,真正的效果评估还得看主观效果。
可以看到在一些测试样例上,微调后的qwen2能够给出准确的实体抽取结果:
至此,你已经完成了qwen2在NER任务上的指令微调训练!
训好的模型默认被保存在./output/Qwen2-NER
文件夹下。
推理模型的代码如下:
import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel def predict(messages, model, tokenizer): device = "cuda" text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512) generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response # 加载原下载路径的tokenizer和model tokenizer = AutoTokenizer.from_pretrained("./qwen/Qwen2-1___5B-Instruct/", use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("./qwen/Qwen2-1___5B-Instruct/", device_map="auto", torch_dtype=torch.bfloat16) # 加载训练好的Lora模型,将下面的[checkpoint-XXX]替换为实际的checkpoint文件名名称 model = PeftModel.from_pretrained(model, model_id="./output/Qwen2-NER/checkpoint-1700") input_text = "西安电子科技大学的陈志明爱上了隔壁西北工业大学苏春红,他们约定好毕业后去中国的苏州定居。" test_texts = { "instruction": """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如; {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体". """, "input": f"文本:{input_text}" } instruction = test_texts['instruction'] input_value = test_texts['input'] messages = [ {"role": "system", "content": f"{instruction}"}, {"role": "user", "content": f"{input_value}"} ] response = predict(messages, model, tokenizer) print(response)
输出结果为:
{"entity_text": "西安电子科技大学", "entity_label": "组织"}
{"entity_text": "陈志明", "entity_label": "人名"}
{"entity_text": "西北工业大学", "entity_label": "组织"}
{"entity_text": "苏春红", "entity_label": "人名"}
{"entity_text": "中国", "entity_label": "地理实体"}
{"entity_text": "苏州", "entity_label": "地理实体"}
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。