当前位置:   article > 正文

【YOLOv8改进】MLCA(Mixed local channel attention):混合局部通道注意力(论文笔记+引入代码)_mixed local channel attention for object detection

mixed local channel attention for object detection

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

介绍

image-20240528213712012

摘要

本项目介绍了一种轻量级的 Mixed Local Channel Attention (MLCA) 模块,该模块同时考虑通道信息和空间信息,并结合局部信息和全局信息以提高网络的表达效果。基于该模块,我们提出了 MobileNet-Attention-YOLO(MAY) 算法,用于比较各种注意力模块的性能。在 Pascal VOC 和 SMID 数据集上,MLCA 相对于其他注意力技术更好地平衡了模型表示效果、性能和复杂度。与 PASCAL VOC 数据集上的 Squeeze-and-Excitation(SE) 注意力机制和 SIMD 数据集上的 Coordinate Attention(CA) 方法相比,mAP 分别提高了 1.0% 和 1.5%。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/运维做开发/article/detail/925663
推荐阅读
相关标签
  

闽ICP备14008679号