赞
踩
简介
ZooKeeper 是一个开源的分布式协调服务,是 Google Chubby 的开源实现。分布式应用程序可以基于 ZooKeeper 实现诸如数据发布/订阅、负载均衡、命名服务、分布式协调/通知、集群管理、Master 选举、分布式锁和分布式队列等功能。
zookeeper 提供了什么
zookeeper=文件系统+通知机制
1、文件系统
Zookeeper维护了一个类似文件系统的数据结构:
每个子目录项如 NameService 都被称作为 znode,和文件系统一样,我们能够自由的增加、删除znode,在一个znode下增加、删除子znode,唯一的不同在于znode是可以存储数据的。
有四种类型的znode:
1、PERSISTENT-持久化目录节点
客户端与zookeeper断开连接后,该节点依旧存在
2、 PERSISTENT_SEQUENTIAL-持久化顺序编号目录节点
客户端与zookeeper断开连接后,该节点依旧存在,只是Zookeeper给该节点名称进行顺序编号
3、EPHEMERAL-临时目录节点
客户端与zookeeper断开连接后,该节点被删除
4、EPHEMERAL_SEQUENTIAL-临时顺序编号目录节点
客户端与zookeeper断开连接后,该节点被删除,只是Zookeeper给该节点名称进行顺序编号
客户端注册监听它关心的目录节点,当目录节点发生变化(数据改变、被删除、子目录节点增加删除)时,zookeeper会通知客户端。
就这么简单.
这个好理解。分布式系统都有好多机器,比如我在搭建hadoop的HDFS的时候,需要在一个主机器上(Master节点)配置好HDFS需要的各种配置文件,然后通过scp命令把这些配置文件拷贝到其他节点上,这样各个机器拿到的配置信息是一致的,才能成功运行起来HDFS服务。Zookeeper提供了这样的一种服务:一种集中管理配置的方法,我们在这个集中的地方修改了配置,所有对这个配置感兴趣的都可以获得变更。这样就省去手动拷贝配置了,还保证了可靠和一致性。
这个可以简单理解为一个电话薄,电话号码不好记,但是人名好记,要打谁的电话,直接查人名就好了。
分布式环境下,经常需要对应用/服务进行统一命名,便于识别不同服务;
类似于域名与ip之间对应关系,域名容易记住;
通过名称来获取资源或服务的地址,提供者等信息
碰到分布二字貌似就难理解了,其实很简单。单机程序的各个进程需要对互斥资源进行访问时需要加锁,那分布式程序分布在各个主机上的进程对互斥资源进行访问时也需要加锁。很多分布式系统有多个可服务的窗口,但是在某个时刻只让一个服务去干活,当这台服务出问题的时候锁释放,立即fail over到另外的服务。这在很多分布式系统中都是这么做,这种设计有一个更好听的名字叫Leader Election(leader选举)。举个通俗点的例子,比如银行取钱,有多个窗口,但是呢对你来说,只能有一个窗口对你服务,如果正在对你服务的窗口的柜员突然有急事走了,那咋办?找大堂经理(zookeeper)!大堂经理指定另外的一个窗口继续为你服务!
在分布式的集群中,经常会由于各种原因,比如硬件故障,软件故障,网络问题,有些节点会进进出出。有新的节点加入进来,也有老的节点退出集群。这个时候,集群中有些机器(比如Master节点)需要感知到这种变化,然后根据这种变化做出对应的决策。我已经知道HDFS中namenode是通过datanode的心跳机制来实现上述感知的,那么我们可以先假设Zookeeper其实也是实现了类似心跳机制的功能吧!
Zookeeper中的角色主要有以下三类,如下表所示:
系统模型如图所示:
1.最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能。
2 .可靠性:具有简单、健壮、良好的性能,如果消息m被到一台服务器接受,那么它将被所有的服务器接受。
3 .实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。但由于网络延时等原因,Zookeeper不能保证两个客户端能同时得到刚更新的数据,如果需要最新数据,应该在读数据之前调用sync()接口。
4 .等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待。
5.原子性:更新只能成功或者失败,没有中间状态。
6 .顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面。
Zookeeper Server数目一般为奇数
Leader选举算法采用了Paxos协议;Paxos核心思想:当多数Server写成功,则任务数据写
成功。也就是说:
如果有3个Server,则两个写成功即可;
如果有4或5个Server,则三个写成功即可。
Server数目一般为奇数(3、5、7)
如果有3个Server,则最多允许1个Server挂掉;
如果有4个Server,则同样最多允许1个Server挂掉
客户端首先和一个Server或者Observe(可以认为是一个Server的代理)通信,发起写请求,然后Server将写请求转发给Leader,Leader再将写请求转发给其他Server,Server在接收到写请求后写入数据并相应Leader,Leader在接收到大多数写成功回应后,认为数据写成功,相应Client。
zookeeper采用层次化的目录结构,命名符合常规文件系统规范;
每个目录在zookeeper中叫做znode,并且其有一个唯一的路径标识;
Znode可以包含数据和子znode(ephemeral类型的节点不能有子znode);
Znode中的数据可以有多个版本,比如某一个znode下存有多个数据版本,那么查询这个路径下的数据需带上版本;
客户端应用可以在znode上设置监视器(Watcher)
znode不支持部分读写,而是一次性完整读写
Znode有两种类型,短暂的(ephemeral)和持久的(persistent);
Znode的类型在创建时确定并且之后不能再修改;
ephemeralzn ode的客户端会话结束时,zookeeper会将该ephemeral znode删除,ephemeralzn ode不可以有子节点;
persistent znode不依赖于客户端会话,只有当客户端明确要删除该persistent znode时才会被删除;
Znode有四种形式的目录节点,PERSISTENT、PERSISTENT_SEQUENTIAL、EPHEMERAL、PHEMERAL_SEQUENTIAL。
Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分 别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。
为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上 了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个 新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。
每个Server在工作过程中有三种状态:
当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的 Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:
1 .选举线程由当前Server发起选举的线程担任,其主要功能是对投票结果进行统计,并选出推荐的Server;
2 .选举线程首先向所有Server发起一次询问(包括自己);
3 .选举线程收到回复后,验证是否是自己发起的询问(验证zxid是否一致),然后获取对方的id(myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息( id,zxid),并将这些信息存储到当次选举的投票记录表中;
4. 收到所有Server回复以后,就计算出zxid最大的那个Server,并将这个Server相关信息设置成下一次要投票的Server;
5. 线程将当前zxid最大的Server设置为当前Server要推荐的Leader,如果此时获胜的Server获得n/2 + 1的Server票数, 设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态,否则,继续这个过程,直到leader被选举出来。
通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1.
每个Server启动后都会重复以上流程。在恢复模式下,如果是刚从崩溃状态恢复的或者刚启动的server还会从磁盘快照中恢复数据和会话信息,zk会记录事务日志并定期进行快照,方便在恢复时进行状态恢复。选主的具体流程图如下所示:
fast paxos流程是在选举过程中,某Server首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和 zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息,重复这个流程,最后一定能选举出Leader。其流程图如下所示:
选完leader以后,zk就进入状态同步过程。
1. leader等待server连接;
2 .Follower连接leader,将最大的zxid发送给leader;
3 .Leader根据follower的zxid确定同步点;
4 .完成同步后通知follower 已经成为uptodate状态;
5 .Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。
流程图如下所示:
Leader主要有三个功能:
1 .恢复数据;
2 .维持与Learner的心跳,接收Learner请求并判断Learner的请求消息类型;
3 .Learner的消息类型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息,根据不同的消息类型,进行不同的处理。
PING消息是指Learner的心跳信息;REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;ACK消息是 Follower的对提议的回复,超过半数的Follower通过,则commit该提议;REVALIDATE消息是用来延长SESSION有效时间。
Leader的工作流程简图如下所示,在实际实现中,流程要比下图复杂得多,启动了三个线程来实现功能。
Follower主要有四个功能:
1. 向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);
2 .接收Leader消息并进行处理;
3 .接收Client的请求,如果为写请求,发送给Leader进行投票;
4 .返回Client结果。
Follower的消息循环处理如下几种来自Leader的消息:
1 .PING消息: 心跳消息;
2 .PROPOSAL消息:Leader发起的提案,要求Follower投票;
3 .COMMIT消息:服务器端最新一次提案的信息;
4 .UPTODATE消息:表明同步完成;
5 .REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息;
6 .SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。
Follower的工作流程简图如下所示,在实际实现中,Follower是通过5个线程来实现功能的。
对于observer的流程不再叙述,observer流程和Follower的唯一不同的地方就是observer不会参加leader发起的投票。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。