当前位置:   article > 正文

10行Python代码能实现哪些有趣的功能?

10行Python代码能实现哪些有趣的功能?

Python凭借其简洁的代码,赢得了许多开发者的喜爱。因此也就促使了更多开发者用Python开发新的模块,从而形成良性循环,Python可以凭借更加简短的代码实现许多有趣的操作。下面我们来看看,我们用不超过10行代码能实现些什么有趣的功能。

一、生成词云

词云又叫文字云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思。

但是作为一个老码农,还是喜欢自己用代码生成自己的词云,复杂么?需要很长时间么?很多文字都介绍过各种的方法,但实际上只需要10行python代码即可。

先安装必要库

pip install wordcloud
pip install jieba
pip install matplotlib
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import jieba

text_from_file_with_apath = open('/Users/hecom/23tips.txt').read()

wordlist_after_jieba = jieba.cut(text_from_file_with_apath, cut_all = True)
wl_space_split =  .join(wordlist_after_jieba)

my_wordcloud = WordCloud().generate(wl_space_split)

plt.imshow(my_wordcloud)
plt.axis(off)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

如此而已,生成的一个词云是这样的:

在这里插入图片描述

image.png
读一下这10行代码:

1~3 行,分别导入了画图的库matplotlib,词云生成库wordcloud 和 jieba的分词库;

4 行,是读取本地的文件,代码中使用的文本是本公众号中的《老曹眼中研发管理二三事》。

5~6 行,使用jieba进行分词,并对分词的结果以空格隔开;

7行,对分词后的文本生成词云;

8~10行,用pyplot展示词云图。

这是我喜欢python的一个原因吧,简洁明快。

二、批量抠图

抠图的实现需要借助百度飞桨的深度学习工具paddlepaddle,我们需要安装两个模块就可以很快的实现批量抠图了,第一个是PaddlePaddle:

python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
  • 1

还有一个是paddlehub模型库:

pip install -i https://mirror.baidu.com/pypi/simple paddlehub
  • 1

更详细的安装事项可以参见飞桨官网

接下来我们只需要5行代码就能实现批量抠图:

import os, paddlehub as hub
humanseg = hub.Module(name='deeplabv3p_xception65_humanseg')        # 加载模型
path = 'D:/CodeField/Workplace/PythonWorkplace/GrapImage/'    # 文件目录
files = [path + i for i in os.listdir(path)]    # 获取文件列表
results = humanseg.segmentation(data={'image':files})    # 抠图
  • 1
  • 2
  • 3
  • 4
  • 5

抠图效果如下:
在这里插入图片描述

image
其中左边为原图,右边为抠图后填充黄色背景图。

三、文字情绪识别

在paddlepaddle面前,自然语言处理也变得非常简单。实现文字情绪识别我们同样需要安装PaddlePaddle和Paddlehub,具体安装参见三中内容。然后就是我们的代码部分了:

import paddlehub as hub        
senta = hub.Module(name='senta_lstm')        # 加载模型
sentence = [    # 准备要识别的语句
    '你真美', '你真丑', '我好难过', '我不开心', '这个游戏好好玩', '什么垃圾游戏',
]
results = senta.sentiment_classify(data={text:sentence})    # 情绪识别
# 输出识别结果
for result in results:
    print(result)
识别的结果是一个字典列表:

{'text': '你真美', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9602, 'negative_probs': 0.0398}
{'text': '你真丑', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0033, 'negative_probs': 0.9967}
{'text': '我好难过', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.5324, 'negative_probs': 0.4676}
{'text': '我不开心', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.1936, 'negative_probs': 0.8064}
{'text': '这个游戏好好玩', 'sentiment_label': 1, 'sentiment_key': 'positive', 'positive_probs': 0.9933, 'negative_probs': 0.0067}
{'text': '什么垃圾游戏', 'sentiment_label': 0, 'sentiment_key': 'negative', 'positive_probs': 0.0108, 'negative_probs': 0.9892}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

其中sentiment_key字段包含了情绪信息,详细分析可以参见Python自然语言处理只需要5行代码。

四、识别是否带了口罩

这里同样是使用PaddlePaddle的产品,我们按照上面步骤安装好PaddlePaddle和Paddlehub,然后就开始写代码:

import paddlehub as hub
# 加载模型
module = hub.Module(name='pyramidbox_lite_mobile_mask')
# 图片列表
image_list = ['face.jpg']
# 获取图片字典
input_dict = {'image':image_list}
# 检测是否带了口罩
module.face_detection(data=input_dict)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

执行上述程序后,项目下会生成detection_result文件夹,识别结果都会在里面,识别效果如下:

图片

五、识别图片中的文字

我们可以通过Tesseract来识别图片中的文字,在Python中实现起来非常简单,但是前期下载文件、配置环境变量等稍微有些繁琐,所以本文只展示代码:

import pytesseract
from PIL import Image
img = Image.open('text.jpg')
text = pytesseract.image_to_string(img)
print(text)
  • 1
  • 2
  • 3
  • 4
  • 5

其中text就是识别出来的文本。如果对准确率不满意的话,还可以使用百度的通用文字接口。

六、简单的小游戏

从一些小例子入门感觉效率很高。

import random
print(1-100数字猜谜游戏!)
num = random.randint(1,100)
guess =guess

i = 0
while guess != num:
    i += 1
    guess = int(input(请输入你猜的数字:))

    if guess == num:
        print(恭喜,你猜对了!)
    elif guess < num:
        print(你猜的数小了...)
    else:
        print(你猜的数大了...)

print(你总共猜了%d %i + 次)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

猜数小案例当着练练手。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/酷酷是懒虫/article/detail/1015497
推荐阅读
相关标签
  

闽ICP备14008679号