当前位置:   article > 正文

动手学深度学习(Pytorch版)代码实践 -卷积神经网络-29残差网络ResNet

resnet

29残差网络ResNet

在这里插入图片描述

import torch  
from torch import nn  
from torch.nn import functional as F 
import liliPytorch as lp  
import matplotlib.pyplot as plt

# 定义一个继承自nn.Module的残差块类
class Residual(nn.Module):
    def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):
        super().__init__()
        # 第一个卷积层,使用3x3的卷积核,填充为1,步幅为指定值
        self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)
        # 第二个卷积层,使用3x3的卷积核,填充为1
        self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)
        
        # 可选的1x1卷积层,用于匹配输入输出通道数和步幅
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        
        # 批量归一化层
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)
        # 为什么需要两个不同的批量归一化层?
        # 1.不同的位置,不同的输入特征
        # 2.独立的参数和统计数据
    
    def forward(self, X):
        # 先通过第一个卷积层、批量归一化层和ReLU激活函数
        Y = F.relu(self.bn1(self.conv1(X)))
        # 然后通过第二个卷积层和批量归一化层
        Y = self.bn2(self.conv2(Y))
        # 如果定义了conv3,则通过conv3调整X
        if self.conv3:
            X = self.conv3(X)
        # 将输入X加到输出Y上实现残差连接
        Y += X
        # 通过ReLU激活函数
        return F.relu(Y)

# 创建一个包含输入和输出形状一致的残差块实例,并测试其输出形状
# blk = Residual(3, 3)
# X = torch.rand(4, 3, 6, 6)
# Y = blk(X)
# print(Y.shape)  # 预期输出形状:torch.Size([4, 3, 6, 6])

# 创建一个包含1x1卷积和步幅为2的残差块实例,并测试其输出形状
# blk = Residual(3, 6, use_1x1conv=True, strides=2)
# print(blk(X).shape)  # 预期输出形状:torch.Size([4, 6, 3, 3])

# 定义一个包含初始卷积层、批量归一化层、ReLU激活函数和最大池化层的顺序容器
b1 = nn.Sequential(
    nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
    nn.BatchNorm2d(64),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)

# 定义一个函数,用于创建由多个残差块组成的模块
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):
    blk = []
    for i in range(num_residuals):
        # 如果是第一个残差块且不是第一个模块,则使用1x1卷积和步幅为2
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk

# 创建由残差块组成的各个模块
# *符号有多种用途,但在函数调用时,*符号主要用于将列表或元组解包。
# *resnet_block()的作用是将列表中的元素逐个传递给nn.Sequential
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

# 创建整个ResNet模型
net = nn.Sequential(
    b1, 
    b2, 
    b3, 
    b4, 
    b5,
    nn.AdaptiveAvgPool2d((1, 1)),  # 自适应平均池化层
    nn.Flatten(),  # 展平层
    nn.Linear(512, 176)  # 全连接层,输出10类
)

# 测试整个网络的输出形状
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'output shape:\t', X.shape)
# Sequential output shape:         torch.Size([1, 64, 24, 24])
# Sequential output shape:         torch.Size([1, 64, 24, 24])
# Sequential output shape:         torch.Size([1, 128, 12, 12])
# Sequential output shape:         torch.Size([1, 256, 6, 6])
# Sequential output shape:         torch.Size([1, 512, 3, 3])
# AdaptiveAvgPool2d output shape:  torch.Size([1, 512, 1, 1])
# Flatten output shape:    torch.Size([1, 512])
# Linear output shape:     torch.Size([1, 10])

# 设置训练参数
lr, num_epochs, batch_size = 0.05, 10, 256
# 加载训练和测试数据
train_iter, test_iter = lp.loda_data_fashion_mnist(batch_size, resize=96)
# 训练模型
lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
# 显示训练结果
plt.show()

# loss 0.009, train acc 0.998, test acc 0.920
# 2306.3 examples/sec on cuda:0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115

运行结果:
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/酷酷是懒虫/article/detail/886688
推荐阅读
相关标签
  

闽ICP备14008679号