当前位置:   article > 正文

深度学习入门——卷积神经网络

深度学习入门——卷积神经网络

本章的主题是卷积神经网络(Convolutional Neural Network,CNN)。CNN被用于图像识别、语音识别等各种场合,在图像识别的比赛中,基于深度学习的方法几乎都以CNN为基础。本章将详细介绍CNN的结构,并用Python实现其处理内容。

整体结构

CNN中新出现了卷积层(Convolution 层)和池化层(Pooling 层)。

之前介绍的神经网络中,相邻层的所有神经元之间都有连接,这称为全连接(fully-connected)

image-20240720204237911 image-20240720204405951

在图7-2 的CNN中,靠近输出的层中使用了之前的“Affine - ReLU”组合。此外,最后的输出层中使用了之前的“Affine-Softmax”组合。这些都是一般的CNN中比较常见的结构。

卷积层

全连接层存在的问题

全连接层存在什么问题呢?那就是数据的形状被“忽视”了

图像是3 维形状,这个形状中应该含有重要的空间信息。比如,空间上邻近的像素为相似的值、RBG的各个通道之间分别有密切的关联性、相距较远的像素之间没有什么关联等,3 维形状中可能隐藏有值得提取的本质模式

全连接层会忽视形状,而卷积层可以保持形状不变。

CNN中,有时将卷积层的输入输出数据称为特征图(feature map)。其中,卷积层的输入数据称为输入特征图(input feature map),输出数据称为输出特征图(output feature map)。

卷积运算

卷积运算相当于图像处理中的“滤波器运算”。

image-20240802101615169

有的文献中也会用“核”这个词来表示这里所说的“滤波器”

image-20240802102325821

CNN中,滤波器的参数就对应之前的权重。并且,CNN中也存在偏置

image-20240802102517680

填充

在进行卷积层的处理之前,有时要向输入数据的周围填入固定的数据(比如0 等),这称为填充(padding),是卷积运算中经常会用到的处理

image-20240802102654478

[!IMPORTANT]

使用填充主要是为了调整输出的大小。

如果每次进行卷积运算都会缩小空间,那么在某个时刻输出大小就有可能变为1,导致无法再应用卷积运算。为了避免出现这样的情况,就要使用填充。在刚才的例子中,将填充的幅度设为1,那么相对于输入大小(4, 4),输出大小也保持为原来的(4, 4)。因此,卷积运算就可以在保持空间大小不变的情况下将数据传给下一层。

步幅

应用滤波器的位置间隔称为步幅(stride)

image-20240802103144570 image-20240802104204634

3维数据的卷积运算

图像是3维数据,有高、长、通道方向

通道方向上有多个特征图时,会按通道进行输入数据和滤波器的卷积运算,并将结果相加,从而得到输出。

image-20240802104732243 image-20240802104747061

需要注意的是,在3 维数据的卷积运算中,输入数据和滤波器的通道数要设为相同的值

滤波器大小可以设定为任意值(不过,每个通道的滤波器大小要全部相同)。这个例子中滤波器大小为(3, 3),但也可以设定为(2, 2)、(1, 1)、(5, 5) 等任意值。再强调一下,通道数只能设定为和输入数据的通道数相同的值(本例中为3)。

结合方块思考

image-20240802105123078

在这个例子中,数据输出是1 张特征图。所谓1 张特征图,换句话说,就是通道数为1 的特征图。

image-20240802105241878

作为4 维数据,滤波器的权重数据要按(output_channel, input_channel, height, width) 的顺序书写

不同形状的方块相加时,可以基于NumPy的广播功能轻松实现

image-20240802105939611

批处理

神经网络的处理中进行了将输入数据打包的批处理。

需要将在各层间传递的数据保存为4 维数据。具体地讲,就是按(batch_num, channel, height, width)的顺序保存数据

image-20240802111315699

这里需要注意的是,网络间传递的是4 维数据,对这N个数据进行了卷积运算。也就是说,批处理将N次的处理汇总成了1 次进行。

池化层

池化是缩小高、长方向上的空间的运算

image-20240802114312044

一般来说,池化的窗口大小会和步幅设定成相同的值

[!WARNING]

除了Max 池化之外,还有Average 池化等。相对于Max 池化是从目标区域中取出最大值,Average 池化则是计算目标区域的平均值。在图像识别领域,主要使用Max 池化。因此,本书中说到“池化层”时,指的是Max 池化。

池化层的特征

  • 没有要学习的参数
  • 通道数不发生变化
  • 对微小的位置变化具有鲁棒性(健壮)

卷积层和池化层的实现

4维数组

比如数据的形状是(10, 1, 28, 28),则它对应10 个高为28、长为28、通道为1 的数据

CNN中处理的是4维数据,因此卷积运算的实现看上去会很复杂,但是通过使用下面要介绍的im2col这个技巧,问题就会变得很简单

基于im2col的展开

im2col是一个函数,将输入数据展开以适合滤波器(权重)

image-20240802150222919

对于输入数据,将应用滤波器的区域(3 维方块)横向展开为1 列。im2col会在所有应用滤波器的地方进行这个展开处理。

image-20240802150706300

在滤波器的应用区域重叠的情况下,使用im2col展开后,展开后的元素个数会多于原方块的元素个数。因此,使用im2col的实现存在比普通的实现消耗更多内存的缺点。但是,汇总成一个大的矩阵进行计算,对计算机的计算颇有益处

image-20240802151751892

卷积层的实现

image-20240802151907906
class Convolution:
    def __init__(self, W, b, stride=1, pad=0):
        self.W = W
        self.b = b
        self.stride = stride
        self.pad = pad
        
    def forward(self, x):
        FN, C, FH, FW = self.W.shape
        N, C, H, W = x.shape
        out_h = int(1 + (H + 2*self.pad - FH) / self.stride)
        out_w = int(1 + (W + 2*self.pad - FW) / self.stride)
        
        col = im2col(x, FH, FW, self.stride, self.pad)
        col_W = self.W.reshape(FN, -1).T # 滤波器的展开
        out = np.dot(col, col_W) + self.b
        
        out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)
        
        return out
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
image-20240802154002605

池化层的实现

image-20240802154609152 image-20240802154739249
class Pooling:
    def __init__(self, pool_h, pool_w, stride=1, pad=0):
        self.pool_h = pool_h
        self.pool_w = pool_w
        self.stride = stride
        self.pad = pad
    def forward(self, x):
        N, C, H, W = x.shape
        out_h = int(1 + (H - self.pool_h) / self.stride)
        out_w = int(1 + (W - self.pool_w) / self.stride)
        # 展开(1)
        col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
        col = col.reshape(-1, self.pool_h*self.pool_w)
        # 最大值(2)
        out = np.max(col, axis=1)
        # 转换(3)
        out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)
        return out
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

池化层的实现按下面3 个阶段进行:

  1. 展开输入数据。
  2. 求各行的最大值。
  3. 转换为合适的输出大小。

CNN的实现

image-20240802155446921

参数

  • input_dim―输入数据的维度:(通道,高,长)
  • conv_param―卷积层的超参数(字典)。字典的关键字如下:
    • filter_num―滤波器的数量
    • filter_size―滤波器的大小
    • stride―步幅
    • pad―填充
  • hidden_size―隐藏层(全连接)的神经元数量
  • output_size―输出层(全连接)的神经元数量
  • weitght_int_std―初始化时权重的标准差
class SimpleConvNet:
    def __init__(self, input_dim=(1, 28, 28),
                 conv_param={'filter_num':30, 'filter_size':5,
                             'pad':0, 'stride':1},
                 hidden_size=100, output_size=10, weight_init_std=0.01):
        filter_num = conv_param['filter_num']
        filter_size = conv_param['filter_size']
        filter_pad = conv_param['pad']
        filter_stride = conv_param['stride']
        input_size = input_dim[1]
        conv_output_size = (input_size - filter_size + 2*filter_pad) / \
        filter_stride + 1
        pool_output_size = int(filter_num * (conv_output_size/2) *
                               (conv_output_size/2))
        self.params = {}
        self.params['W1'] = weight_init_std * \
        np.random.randn(filter_num, input_dim[0],
                        filter_size, filter_size)
        self.params['b1'] = np.zeros(filter_num)
        self.params['W2'] = weight_init_std * \
        np.random.randn(pool_output_size,
                        hidden_size)
        self.params['b2'] = np.zeros(hidden_size)
        self.params['W3'] = weight_init_std * \
        np.random.randn(hidden_size, output_size)
        self.params['b3'] = np.zeros(output_size)
        
        self.layers = OrderedDict()
        self.layers['Conv1'] = Convolution(self.params['W1'],
                                           self.params['b1'],
                                           conv_param['stride'],
                                           conv_param['pad'])
        self.layers['Relu1'] = Relu()
        self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
        self.layers['Affine1'] = Affine(self.params['W2'],
                                        self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W3'],
                                        self.params['b3'])
        self.last_layer = softmaxwithloss()
        
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)
        return x
    def loss(self, x, t):
        y = self.predict(x)
        return self.lastLayer.forward(y, t)
    
    def gradient(self, x, t):
        # forward
        self.loss(x, t)
        # backward
        dout = 1
        dout = self.lastLayer.backward(dout)
        
        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)
        # 设定
        grads = {}
        grads['W1'] = self.layers['Conv1'].dW
        grads['b1'] = self.layers['Conv1'].db
        grads['W2'] = self.layers['Affine1'].dW
        grads['b2'] = self.layers['Affine1'].db
        grads['W3'] = self.layers['Affine2'].dW
        grads['b3'] = self.layers['Affine2'].db
        return grads
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69

CNN的可视化

本节将通过卷积层的可视化,探索CNN中到底进行了什么处理。

第1层权重的可视化

image-20240802174353492 image-20240802174527054

卷积层的滤波器会提取边缘斑块等原始信息。而刚才实现的CNN会将这些原始信息传递给后面的层。

基于分层结构的信息提取

在堆叠了多层的CNN中,各层中又会提取什么样的信息呢?

根据深度学习的可视化相关的研究,随着层次加深,提取的信息(正确地讲,是反映强烈的神经元)也越来越抽象

图7-26 中展示了进行一般物体识别(车或狗等)的8 层CNN。AlexNet 网络结构堆叠了多层卷积层和池化层,最后经过全连接层输出结果

image-20240802182400482

随着层次加深,神经元从简单的形状向“高级”信息变化

具有代表性的CNN

LeNet

LeNet 在1998 年被提出,是进行手写数字识别的网络

它有连续的卷积层和池化层(正确地讲,是只“抽选元素”的子采样层),最后经全连接层输出结果。

image-20240802182808588

与“现在的CNN”不同点

  • 对于激活函数,LeNet 中使用sigmoid 函数,而现在的CNN中主要使用ReLU函数。

  • 原始的LeNet 中使用子采样(subsampling)缩小中间数据的大小,而现在的CNN中Max池化是主流。

AlexNet

AlexNet是引发深度学习热潮的导火线

image-20240802183234230

与LeCun不同点

  • 激活函数使用ReLU。
  • 使用进行局部正规化的LRN(Local Response Normalization)层。
  • 使用Dropout(6.4.3 节)。

[!IMPORTANT]

大多数情况下,深度学习(加深了层次的网络)存在大量的参数。因此,学习需要大量的计算,并且需要使那些参数“满意”的大量数据。可以说是GPU和大数据给这些课题带来了希望。

小结

  • CNN在此前的全连接层的网络中新增了卷积层和池化层。
  • 使用im2col函数可以简单、高效地实现卷积层和池化层。
  • 通过CNN的可视化,可知随着层次变深,提取的信息愈加高级。
  • LeNet和AlexNet是CNN的代表性网络。
  • 在深度学习的发展中,大数据和GPU做出了很大的贡献。
  • 激活函数使用ReLU。
  • 使用进行局部正规化的LRN(Local Response Normalization)层。
  • 使用Dropout(6.4.3 节)。

[!IMPORTANT]

大多数情况下,深度学习(加深了层次的网络)存在大量的参数。因此,学习需要大量的计算,并且需要使那些参数“满意”的大量数据。可以说是GPU和大数据给这些课题带来了希望。

小结

  • CNN在此前的全连接层的网络中新增了卷积层和池化层。
  • 使用im2col函数可以简单、高效地实现卷积层和池化层。
  • 通过CNN的可视化,可知随着层次变深,提取的信息愈加高级。
  • LeNet和AlexNet是CNN的代表性网络。
  • 在深度学习的发展中,大数据和GPU做出了很大的贡献。
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/酷酷是懒虫/article/detail/929338
推荐阅读
相关标签
  

闽ICP备14008679号