赞
踩
这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。
爬取大众点评十大热门糖水店的评论,爬取网页后从html页面中把需要的字段信息(顾客id、评论时间、评分、评论内容、口味、环境、服务、店铺ID)提取出来并存储到MYSQL数据库中。
链接格式为"http://www.dianping.com/shop/" + shopID + “/review_all/” + pi,如:http://www.dianping.com/shop/518986/review_all/p1 ,一页评论有20条。我们使用for循环构造链接URL,使用requests库发起请求并把html页面爬取下来,通过BeautifulSoup和re库解析页面提取信息。
我们发现完整的评论都存储在’div’,'main-review’中,且部分页面口味、环境、服务并不是每一页都有,因此需要使用try…except…防止程序中断,BeautifulSoup部分代码如下:
for item in soup('div','main-review'):
cus_id = item.find('a','name').text.strip()
comment_time = item.find('span','time').text.strip()
comment_star = item.find('span',re.compile('sml-rank-stars')).get('class')[1]
cus_comment = item.find('div',"review-words").text.strip()
scores = str(item.find('span','score'))
try:
kouwei = re.findall(r'口味:([\u4e00-\u9fa5]*)',scores)[0]
huanjing = re.findall(r'环境:([\u4e00-\u9fa5]*)',scores)[0]
fuwu = re.findall(r'服务:([\u4e00-\u9fa5]*)',scores)[0]
except:
kouwei = huanjing = fuwu = '无'
我们使用MYSQL数据库,安装教程参考菜鸟教程,python连接MYSQL数据推荐使用pymysql,同样是推荐菜鸟教程菜鸟教程。我们需要先建立一个数据库和表,然后连接并定义游标,然后写对应的sql语句,最后执行事务,存储部分的代码如下:
#连接MYSQL数据库 db = pymysql.connect("localhost","root","","TESTDB" ) cursor = db.cursor() #存储爬取到的数据 def save_data(data_dict): sql = '''INSERT INTO DZDP(cus_id, comment_time, comment_star, cus_comment, kouwei, huanjing, fuwu, shopID) VALUES(%s,%s,%s,%s,%s,%s,%s,%s)''' value_tup = (data_dict['cus_id'] ,data_dict['comment_time'] ,data_dict['comment_star'] ,data_dict['cus_comment'] ,data_dict['kouwei'] ,data_dict['huanjing'] ,data_dict['fuwu'] ,data_dict['shopID'] ) try: cursor.execute(sql,value_tup) db.commit() except: print('数据库写入失败') return
from fake_useragent import UserAgent
ua = UserAgent()
headers = {'User-Agent':ua.random}
headers = {
'User-Agent':ua.random,
'Cookie':cookie,
'Referer': 'http://www.dianping.com/shop/518986/review_all'
}
import random
import time
time.sleep(6*random.random() + 4)
查看数据大小以及基础信息 ,浏览数据
样本分布
各店铺评分分布
点评数的的时间分布
查看评论长度对结果影响
去除非文本数据:可以看出,爬虫获取的数据非常多类似“\xa0”的非文本数据,而且都还有一些无意义的干扰数据,如结尾的“收起评论”
data['cus_comment'] = data['cus_comment'].str.replace(r'[^\u4e00-\u9fa5]','').str.replace('收起评论','')
中文分词:中文文本数据处理,怎么能离开中文分词呢,我们使用jieba库,简单又好用。这里我们把文本字符串处理为以空格区隔的分词字符串
import jieba
data['cus_comment'] = data['cus_comment'].apply(lambda x:' '.join(jieba.cut(x)))
去除停用词:文本中有很多无效的词,比如“着”,“和”,还有一些标点符号,这些我们不想在文本分析的时候引入,因此需要去掉,因为wordcloud和TF-IDF都支持停用词,因此就不额外处理了
模型的效果还可以的样子,yeah~接下来我们好好讲讲怎么做的哈,我们通过爬虫爬取了大众点评广州8家最热门糖水店的3W条评论信息以及评分作为训练数据,前面的分析我们得知样本很不均衡。接下来我们的整体思路就是:文本特征提取(TF-IDF)—机器学习建模—模型评价。
我们先不处理样本不均衡问题,直接建模后查看结果,接下来我们再按照两种方法处理样本不均衡,对比结果。
模型不能直接处理文本数据,因此需要先把文本数据转为向量,方法有词库表示法、TF-IDF、word2vec等
这里我们使用文本分类的经典算法朴素贝叶斯算法,而且朴素贝叶斯算法的计算量较少。特征值是评论文本经过TF-IDF处理的向量,标签值评论的分类共两类,好评是1,差评是0。情感评分为分类器预测分类1的概率值。
#从大众点评网找两条评论来测试一下
test1 = '很好吃,环境好,所有员工的态度都很好,上菜快,服务也很好,味道好吃,都是用蒸馏水煮的,推荐,超好吃' #5星好评
test2 = '糯米外皮不绵滑,豆沙馅粗躁,没有香甜味。12元一碗不值。' #1星差评
print('好评实例的模型预测情感得分为{}\n差评实例的模型预测情感得分为{}'.format(ceshi(classifier,test1),ceshi(classifier,test2)))
>>>好评实例的模型预测情感得分为0.8638082706675478
>>>差评实例的模型预测情感得分为0.7856544482460911
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。