赞
踩
基于yolov5 v5.0分支进行剪枝,采用yolov5s模型,原理为Learning Efficient Convolutional Networks Through Network Slimming(https://arxiv.org/abs/1708.06519)。
yolov5 v5.0转NCNN和安卓移植见YOLOv5转ONNX转NCNN_MidasKing的博客-CSDN博客_yolov5转onnx
yolov5s是非常优秀的轻量级检测网络,但是有时候模型依然比较大,使得我们不得不缩减网络输入大小,但是单纯降低输入来减少运算,例如640降低到320,对检测效果损失很大,同时模型体积依然是14M左右,所以可以通过添加L1正则来约束BN层系数,使得系数稀疏化,通过稀疏训练后,裁剪掉稀疏很小的层,对应激活也很小,所以对后面的影响非常小,反复迭代这个过程,可以获得很compact的模型,步骤基本是这样。
展开讲一下原理:
我们知道BN层的计算是这样的:
所以每个channel激活大小Zout和系数γ(pytorch对应bn层的weights,β对应bias)正相关,如果γ太小接近于0,那么激活值也非常小:
那么拿掉那些γ->0的channel是可以的,但是正常情况下,我们训练一个网络后,bn层的系数是类似正态分布:
上图就是正常训练时候γ的随着epoch的直方图分布,可以看基本正太分布。0附近的值是很少的,所以没法剪枝。
通过添加L1 正则约束:
上面第一项是正常训练的loss函数,第二项是约束,其中g(s) = |s|,λ是正则系数,根据数据集调整。可以将参数稀疏化,看看如果添加到训练的损失函数中去,在进行反向传播时候:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。