当前位置:   article > 正文

解码 LangChain|用 LangChain 和 Milvus 从零搭建 LLM 应用_langchain milvus

langchain milvus

如何从零搭建一个 LLM 应用?不妨试试 LangChain + Milvus 的组合拳。

作为开发 LLM 应用的框架,LangChain 内部不仅包含诸多模块,而且支持外部集成;Milvus 同样可以支持诸多 LLM 集成,二者结合除了可以轻松搭建一个 LLM 应用,还可以起到强化 ChatGPT 功能和效率的作用。

本文为解码 LangChain 系列,将深入探讨如何借助 LangChain 与 Milvus 的力量增强 LLM 应用,以及如何构建和优化 AIGC 应用的小秘籍!

01. LangChain + 向量数据库:解决幻觉问题

LangChain

LangChain 是一种用于开发 LLM 应用的框架。LangChain 设计如下:

  • Data-aware:连接 LLM 与其他数据源
  • Agentic:允许 LLM 与 LangChain 环境交互

LangChain 包括许多模块,例如 Models、Prompts、Memory、Indexes、Chains、Agents 和 Callbacks。对于每个模块,LangChain 都提供标准化的可扩展接口。LangChain 还支持外部集成,甚至可实现端到端。LLM Wrapper 是 LangChain 的核心功能,提供了许多 LLM 模型,例如 OpenAI、Cohere、Hugging Face 等模型。

向量数据库

LangChain 提供一系列有用的大型语言模型(LLMs),可满足多样的用户需求。LangChain 的另一大亮点是其扩展功能——集成各种向量数据库(如 Milvus、Faiss 等),因此可以很好地进行语义搜索。

LangChain 通过 VectorStore Wrapper 提供了标准化的接口,从而简化数据加载和检索的流程。例如,大家可以使用 LangChain 的 Milvus 类,通过from_text方法存储文档的特征向量,然后调用similarity_search 方法获取查询语句的相似向量(也就是在向量空间中找到距离最接近的文档向量),从而轻松实现语义搜索。

通过 ChatGPT-Retrieval-Plugin 项目可以发现,向量数据库在 LLM 应用中起着至关重要的作用,它并不只局限于语义检索的用途,还包括其他用途,比如:

  • 存储问答上下文。这是 Auto-GPT 和 BabyAGI 等 LLM 平台提供的有用功能。这种功能可以增强LLM 应用对于上下文的理解和记忆能力。
  • 为 GPTCache 等 LLM 平台提供语义缓存,优化性能并节省成本。
  • 实现文档知识功能,降低 LLM 应用产生幻觉概率(如:OSSChat)。

如何解决 ChatGPT 的幻觉问题?

人工智能系统经常会产生“幻觉”、捏造事实、返回错误信息,更有甚者把 ChatGPT 形容为“一本正经地说废话“。因此,幻觉问题会降低 ChatGPT 回答的可信度,向量数据库可以有效解决幻觉问题。

其工作流程如下图所示:

1.png

首先,在 Milvus 中存储由官方文档转化而来的文本向量。然后,在响应问题时搜索相关文档(如上图中红色箭头流程所示)。ChatGPT 最后根据正确的上下文回答问题,从而产生准确的答案(如上图中绿色箭头流程所示)。

上述事例说明,用户无需标记、训练数据或进行额外开发和微调,只需将文本数据转化为向量并存储在 Milvus 中,即可解决 ChatGPT 的幻觉问题。LangChain + Milvus + ChatGPT 的组合可实现文本存储。ChatGPT 的答案也是基于参考文档库中的内容而返回的,可大大提高其回答的准确性。这样一来,聊天机器人可以基于正确的知识进行问答,减少出现“胡说八道”的可能性。

接下来分享一个 LangChain + Milvus + ChatGPT 的组合一个实际的具体应用场景:

如果我是一名 Milvus 社区管理员,每天需要回答各种社区相关问题,那么可以搭建一套智能应用来大大提高自己的工作效率。首先,可以将所有 Milvus 官方文档存储起来。然后,将这些文档作为必要的上下文知识提供给 ChatGPT。这样一来,如果用户问道:“如何使用 Milvus 搭建聊天机器人?”,构建的聊天机器人可以搜索与用户问题语义相关的官方文档。这种方法无需进行额外的数据训练,但能够大大提升工作效率和回答准确性。

02. LangChain + Milvus :搭建智能应用

搭建流程

1. 前提条件

  • 运行 pip install langchain 命令安装 LangChain。
  • 安装向量数据库 Milvus 或注册 Zilliz Cloud ——大家可以选择在本地系统上安装和启动开源向量数据库 Milvus 或者选择全托管向量数据库 Zilliz Cloud 服务,免去运维部署的麻烦。Zilliz Cloud 简单易用,具备高扩展性,提供超强性能,本教程将使用 Zilliz Cloud。

2. 加载知识库数据

首先,需要使用标准格式加载数据。也就是说,我们需要将文本切成小块,从而确保传入 LLM 模型的数据为一段段小的文本片段。

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Milvus
from langchain.document_loaders import TextLoader

loader = TextLoader('state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

接下来,我们需要将小块的文本片段转化为向量并存储在向量数据库中。以下示例代码使用 OpenAI 的模型和 Zilliz Cloud 向量数据库。

embeddings = OpenAIEmbeddings()

vector_db = Milvus.from_documents(
    docs,
    embeddings,
    connection_args={
        "uri": "YOUR_ZILLIZ_CLOUD_URI",
        "user": "YOUR_ZILLIZ_CLOUD_USERNAME",
        "password": "YOUR_ZILLIZ_CLOUD_PASSWORD",
        "secure": True
    }
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

3. 查询数据

加载数据后,可以在问答链(Chain)中使用这些数据,下述代码主要解决上文提到的“幻觉”问题。

使用 similarity_search 方法将查询语句转化为特征向量,然后在 Zilliz Cloud 中搜索相似向量,以及相关的文档内容。

query = "What did the president say about Ketanji Brown Jackson"
docs = vector_db.similarity_search(query)
  • 1
  • 2

运行 load_qa_chain获取最终答案。这是一个最通用的用于回答问题的接口,它加载一整个链,可以根据所有数据库中文本进行问答。以下示例代码使用 OpenAI 作为 LLM 模型。在运行时,QA Chain 接收input_documentsquestion,将其作为输入。input_documents是与数据库中的query相关的文档。LLM 基于这些文档的内容和所提问的问题来组织答案。

from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI

llm = OpenAI(temperature=0)
chain = load_qa_chain(llm, chain_type="stuff")
chain.run(input_documents=docs, question=query)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

Milvus:更适合 AIGC 应用的向量数据库

如果想要提高应用的可靠性,需要使用数据库存储文本向量。但为什么选择 Milvus 向量数据库?

  • 助力语义搜索:不同于传统数据库,Milvus 专为向量设计,可以实现语义检索。
  • 高度可扩展:支持灵活扩展,用户可轻松存储和检索十亿级向量数据。此外,可扩展性对于检索速度和效率至关重要。
  • 支持混合查询:Milvus 支持混合查询,将向量相似性搜索和标量过滤相结合,可满足不同的搜索场景和要求。
    提供丰富的 API:Milvus 提供多语言的 API,包括 Python、Java、Go、Restful 等,方便用户在各种应用中集成和使用 Milvus。
  • 集成多种 LLM 模型:Milvus 可与多种主流 LLM 模型集成,包括 OpenAI Plugin、LangChain、LLamaIndex 等,方便用户灵活定制化其应用。
  • 多种部署版本和配置:Milvus 提供多种版本(如:MilvusLite 版、单机版、分布式版和云服务版),可以轻松适应不同类型的应用场景,即可支持小型项目,也可适用于企业级数据检索。

03. 如何优化 AIGC 应用?

人工智能领域中不断涌现各种新技术、新突破。本文将介绍 2 种优化 AIGC 应用的秘籍,帮助你进一步提升 AIGC 应用的性能和搜索质量。

提升 AIGC 应用程序性能:使用 GPTCache

如果想要提升 AIGC 应用性能并节省成本,可以试试 GPTCache。这个创新项目旨在创建语义缓存,以存储 LLM 响应。

具体而言,GPTCache 会缓存 LLM 的响应。在收到问题时,GPTCache 使用向量数据库检索相似的问题并查询此前缓存的响应。这样一来,应用便可快速准确地回答用户。GPTCache 可有效避免重复问题多次调用 LLM 接口所产生的费用以及需要等待的响应时间,从而提供更快速、更准确的答案,使 AIGC 应用更受用户欢迎。

提高搜索质量:调整 Embedding 模型和 Prompt

此外,我们可以通过微调 Embedding 模型和 Prompt 达到提高搜索质量的效果。Embedding 模型在 AIGC 应用中不可或缺,发挥着将文本转化为向量的关键作用。微调模型具体指调节模型从而使其注重关注某些关键词或短语,并调整模型权重和评分机制,从而迎合用户的需求和偏好。微调后,模型可以更准确地理解用户问题、将其进行分类,从而提高语义搜索结果的准确性和相关性,返回准确的结果。

影响搜索质量的另一重要因素是搜索提示。例如“我有什么可以帮助您的?”或“您有什么想法?”都可以用于提示用户该输入何种提问。通过测试和修改这些提示,可以提高搜索结果的质量和相关性。如果你的应用程序面向特定行业或人群,可以在提示内加入一些行业术语,这样有助于指导用户进行更相关的搜索查询。

总之,LangChain + Milvus 的组合方式可以帮助开发者从零开始搭建 LLM 应用。LangChain 为 LLM 提供了标准化且易用的接口,Milvus 则提供出色的存储和检索能力,从而整体提升 ChatGPT 等应用的功能和效率。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/黑客灵魂/article/detail/1020024

推荐阅读
相关标签