赞
踩
从技术层面来说,隐私计算主要有三类主流技术路线:
多方安全计算
多方安全计算(Secure Multiparty Compute,MPC)是一种将计算分布在多个参与方之间的密码学分支,参与者在不泄露各自隐私数据情况下,利用隐私数据参与保密计算,共同完成某项计算任务。
这项技术最早可追溯至1981年,Rabin首次提出通过Oblivious Transfer(OT)协议实现机密信息交互。1982年,姚期智教授在论文《Protocols for Secure Computations》中提出“百万富翁问题“,即两个百万富翁在没有可信第三方、不透露自己财产状况的情况下,如何比较谁更富有,这标志着多方安全计算技术的产生。1986年,姚期智教授提出混淆电路技术,实现了第一个多方(两方)安全计算方案。1987年,Goldreich等人提出了基于电路的秘密共享方案GMW,并将其应用于多方安全计算。
同态加密
同态加密(Homomorphic Encryption,HE)是一种通过对相关密文进行有效操作(不需获知解密秘钥),从而允许在加密内容上进行特定代数运算的加密方法。其特点是允许在加密之后的密文上直接进行计算,且计算结果解密后和明文的计算结果一致。
1978年,Ron Rivest、Leonard Adleman和Michael L. Dertouzos提出同态加密问题,并在同年提出满足乘法同态的RSA算法。同态加密问题的提出将加密技术的研究从静态引向动态,是理论上的巨大革新,也开创了隐私计算的先河。2009年,Gentry提出了首个实用的全同态加密算法,标志着全同态计算时代的开始。2017年,国际同态加密标准委员会成立,标志着同态加密在全球进入高速发展阶段。
联邦学习
联邦学习(Federated Learning,FL)是一种具有隐私保护属性的分布式机器学习技术。在机器学习中,通常会从多个数据源聚合训练数据,并将其传送到中央服务器进行训练。然而这一过程容易产生数据泄露风险。在联邦学习模型中,运算在本地进行,只在各个参与方之间交换不包含隐私信息的中间运算结果,用于优化各个参与方相关的模型参数,最终产生联邦模型,并将应用于推理,从而实现了“原始数据不出本地”、“数据可用不可见”的数据应用模式。按照数据集合维度相似性构成的特点,业界普遍将联邦学习分为横向联邦学习、纵向联邦学习与联邦迁移学习。
2012年,王爽等在期刊Journal of Biomedical Informatics发表论文,首次解决医疗在线安全联邦学习问题,该框架服务于多个国家级医疗健康网络,也是联邦学习系统构架层面的突破。
零知识证明
零知识证明(Zero-Knowledge Proof,ZKP),是指证明者能够在不向监控者提供任何有用信息的情况下,使验证者相信某个论断是正确的。零知识证明实际上是一种涉及双方或更多方的协议,即双方或更多方完成一项任务需要采取的一系列步骤,证明者需要向验证者证明并使其相信自己知道或拥有某一消息,但证明过程不向验证者泄露任何关于被证明消息的信息。
1985年,S. Goldwasser、S. Micali和C. Rackoff首次提出零知识证明(Zero-Knowledge Proof, ZKP)概念。目前在实际应用中,某些加密货币就采用了这一技术路线。
可信执行环境
可信执行环境(TEE)是一种基于硬件的隐私保护方法,是指计算平台上由软硬件方法构建的一个安全区域,可保证在安全区域内部加载的代码和数据在机密性和完整性方面得到保护。2009年,OMTP工作组率先提出一种双系统解决方案:在同一个智能终端下,除多媒体操作系统外再提供一个隔离的安全操作系统,这一运行在隔离硬件之上的隔离安全操作系统用来专门处理敏感信息以保证信息安全,该方案是可信执行环境的前身。
在实践层面,目前以Intel SGX和ARM TrustZone为基础的TEE技术起步较早,社区和生态已比较成熟。同时,国产化的芯片厂商在TEE方向上已经开始发力,国内芯片厂商如海光、鲲鹏、飞腾、兆芯等都推出了支持可信执行环境的技术,信创国产化趋势明显,相关生态也正在加速建立、完善。
差分隐私
2006年,C. Dwork提出差分隐私(Differential Privacy, DP),这一技术路线的主要原理是通过引入噪声对数据进行扰动,并要求输出结果对数据集中的任意一条记录的修改不敏感,使攻击者难以从建模过程中交换的统计信息或者建模的结果反推出敏感的样本信息。
隐私计算的未来:融合应用
除上述技术之外,还有图联邦、混淆电路、不经意传输等多种技术路线被先后提出,并不断在科研和产业的推动下得到发展和应用。
纵观隐私计算不同技术路线,可以发现各有其优势与不足,在可支持计算、隐私保护维度、隐私保护强度、安全性、性能等方面有较大差异,分别适合不同的应用和场景;同时,不同的技术路线目前正在持续融合、取长补短,实现1+1>2的应用效果。例如通过硬件加速的全同态加密算法构建强隐私、高性能的纵向联邦学习系统,就是一个不同技术路线深度融合的典型案例。
面向使用者
面向开发者
难题
根据过去几年的实践经验发现,隐私计算技术方向多样,不同场景下有其各自合适的技术解决方案,且涉及领域众多,需要多领域专家共同协作。
对于从业者来说,隐私计算学习曲线很高,非隐私计算北京的用户使用困难。
在实际技术开发中,隐私计算解决方案往往是多个技术路线的组合,过程中涉及到很多重复性的工作。比如,如果开发者想使用联邦学习,就要使用A框架来做研发;如果想使用多方安全计算MPC,那么又要使用B框架来做研发,如果想使用可信硬件,还要去熟悉所选硬件的架构才能真正开始使用。单现实的业务需求是,经常需要多个技术一起来使用,那么这时候就会出现繁琐、重复的开发工作。本是一项技术创新,却带来了技术“烟囱”的困扰。
更致命的是,在交叉技术路线的解决方案中,一个底层新技术的引入,会牵动上层所有工作,拖累技术迭代。引入一项新技术,也必定会改变上层很多东西,对于用户来说,所有的部署可能都要重复体验一遍,体感非常不好。
现状
目前开源的隐私计算框架,如 TensorFlow Federated(TFF)、FATE、FederatedScope、Rosetta、FedLearner、Primihub 等几乎都是针对单个隐私计算路线。这些框架为隐私计算相关社区研究和工业应用都提供了一定支持。然而,实际场景中日益多样化的应用需求,以及技术本身的局限性,给现有隐私计算框架带来了新的挑战。
隐语的设计目标是使数据科学家和机器学习开发者可以非常容易地使用隐私计算技术进行数据分析和机器学习建模,而无需了解底层技术细节。其总体架构自底向上一共分为五层:
最底层是资源管理层。主要承担了两方面的职责。第一是面向业务交付团队,可以屏蔽不同机构底层基础设施的差异,降低业务交付团队的部署运维成本。另一方面,通过对不同机构的资源进行统一管理,解决业务规模化后的高可用和稳定性问题。
往上是明密文计算设备与原语层。提供了统一的可编程设备抽象,将多方安全计算 (MPC)、同态加密 (HE)、可信硬件 (TEE) 等隐私计算技术抽象为密态设备,将单方本地计算抽象为明文设备。同时,提供了一些不适合作为设备抽象的基础算法,如差分隐私 (DP)、安全聚合 (Secure Aggregation) 等。未来当有新的密态计算技术出现时,可以通过这种松耦合的设计集成进隐私框架。
继续往上是明密文混合调度层。这层一方面对上层提供了明密文混合编程的接口,同时也提供了统一的设备调度抽象。通过将上层算法描述为一张有向无环图,其中节点表示某个设备上的计算,边表示设备之间的数据流动,即逻辑计算图。然后由分布式框架进一步将逻辑计算图拆分并调度至物理节点。在这一点上,隐语借鉴了主流的深度学习框架,后者将神经网络表示为一张由设备上的算子和设备间的张量流动构成的计算图。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数网络安全工程师,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上网络安全知识点!真正的体系化!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
正的体系化!**
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。