赞
踩
利用sqoop将数据从MySQL导入到HDFS中,利用mahout的LDA的cvb实现对输入数据进行聚类,并将结果更新到数据库中。数据流向图如下 mahout算法分析 输入数据格式 为的matrix矩阵,key为待聚类文本的数字编号,value为待聚类文本的单词向量Vector, Vector的index为单词在字典中的编号, value为TFIDF值。 算法相关参数详解(不包含hadoop运行参数) 项目中所有参数设置均与mahout-0.9目录下的examples/bin/cluster-reuters.sh的147-172行设置一样,即 $SCOUT cvb -i ${WORK_DIR}/${ROWID_MATRIX_DIR}/matrix -o ${WORK_DIR}/${LDA_DIR} -k 20 -ow -x 20 -dict ${WORK_DIR}/${DICTIONARY_FILES} -dt ${WORK_DIR}/${LDA_TOPICS_DIR} -mt ${WORK_DIR}/${LDA_MODEL_DIR} input -- 输入数据的hdfs路径,这里是/home/hadoop-user/scout_workspace/scout/dataset/reuters-out-matrix-debug/matrix dt -- 文档主题输出路径,保存了每个文档的相应topic的概率,这里是/home/hadoop-user/scout_workspace/scout/dataset/reuters-lda-topics mt -- model的路径,这里是/home/hadoop-user/scout_workspace/scout/dataset/reuters-lda-debug k -- number of topics to learn,这里设置成20 x -- 模型迭代次数,也就是需要多少次迭代来生成最后的Model,默认值20 seed -- Random seed,生成初始readModel时的种子,默认值System.nanoTime() % 10000 dict -- 字典路径,这里是/home/hadoop-user/scou
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。