赞
踩
这是OpenCV图像处理专栏的第十一篇文章,之前介绍过两种处理白平衡的算法,分别为灰度世界算法和完美反射算法。今天来介绍另外一个自动白平衡的算法,即动态阈值法,一个看起来比较厉害的名字。论文原文链接放在附录。
和灰度世界法和完美反射算法类似,动态阈值算法仍然分为两个步骤即白点检测和白点调整,具体如下:
1、把尺寸为 w × h w\times h w×h的原图像从 R G B RGB RGB空间转换到 Y C r C b YCrCb YCrCb空间。
2、把图像分成 3 × 4 3\times 4 3×4个块。
3、对每个块分别计算 C r Cr Cr, C b Cb Cb的平均值 M r Mr Mr, M b Mb Mb。
4、判定每个块的近白区域(near-white region
)。判别准则为:
-
C
b
(
i
,
j
)
−
(
M
b
+
D
b
×
s
i
g
n
(
M
b
)
)
<
1.5
×
D
b
Cb(i, j) − (Mb + Db\times sign(Mb)) < 1.5\times Db
Cb(i,j)−(Mb+Db×sign(Mb))<1.5×Db
-
C
r
(
i
,
j
)
−
(
1.5
×
M
r
+
D
r
×
s
i
g
n
(
M
r
)
)
<
1.5
×
D
r
Cr(i, j) − (1.5\times Mr + Dr \times sign(Mr )) < 1.5\times Dr
Cr(i,j)−(1.5×Mr+Dr×sign(Mr))<1.5×Dr,其中sign为符号函数,即正数返回1,负数返回0。
5、设一个“参考白色点”的亮度矩阵 R L RL RL,大小为 w × h w\times h w×h。
6、若符合判别式,则作为“参考白色点”,并把该点 ( i , j ) (i,j) (i,j)的亮度( Y Y Y分量)值赋给 R L ( i , j ) RL(i,j) RL(i,j)。若不符合,则该点的 R L ( i , j ) RL(i,j) RL(i,j)值为0。
10%
的亮度(Y
分量)值,并选取其中的最小值Lu_min
。RL
,若RL(i,j)<Lu_min
, RL(i,j)=0
; 否则,RL(i,j)=1
。R
,G
,B
与RL
相乘,得到R2
,G2
,B2
。 分别计算R2
,G2
,B2
的平均值,Rav
,Gav
,Bav
。Ymax=double(max(max(Y)))
,则Rgain=Ymax/Rav
,Ggain=Ymax/Gav
, Bgain=Ymax/Bav
。Ro= R*Rgain
; Go= G*Ggain
; Bo= B*Bgain
;块的大小取了100,没处理长或者宽不够100的结尾部分,这个可以自己添加。
const float YCbCrYRF = 0.299F; // RGB转YCbCr的系数(浮点类型) const float YCbCrYGF = 0.587F; const float YCbCrYBF = 0.114F; const float YCbCrCbRF = -0.168736F; const float YCbCrCbGF = -0.331264F; const float YCbCrCbBF = 0.500000F; const float YCbCrCrRF = 0.500000F; const float YCbCrCrGF = -0.418688F; const float YCbCrCrBF = -0.081312F; const float RGBRYF = 1.00000F; // YCbCr转RGB的系数(浮点类型) const float RGBRCbF = 0.0000F; const float RGBRCrF = 1.40200F; const float RGBGYF = 1.00000F; const float RGBGCbF = -0.34414F; const float RGBGCrF = -0.71414F; const float RGBBYF = 1.00000F; const float RGBBCbF = 1.77200F; const float RGBBCrF = 0.00000F; const int Shift = 20; const int HalfShiftValue = 1 << (Shift - 1); const int YCbCrYRI = (int)(YCbCrYRF * (1 << Shift) + 0.5); // RGB转YCbCr的系数(整数类型) const int YCbCrYGI = (int)(YCbCrYGF * (1 << Shift) + 0.5); const int YCbCrYBI = (int)(YCbCrYBF * (1 << Shift) + 0.5); const int YCbCrCbRI = (int)(YCbCrCbRF * (1 << Shift) + 0.5); const int YCbCrCbGI = (int)(YCbCrCbGF * (1 << Shift) + 0.5); const int YCbCrCbBI = (int)(YCbCrCbBF * (1 << Shift) + 0.5); const int YCbCrCrRI = (int)(YCbCrCrRF * (1 << Shift) + 0.5); const int YCbCrCrGI = (int)(YCbCrCrGF * (1 << Shift) + 0.5); const int YCbCrCrBI = (int)(YCbCrCrBF * (1 << Shift) + 0.5); const int RGBRYI = (int)(RGBRYF * (1 << Shift) + 0.5); // YCbCr转RGB的系数(整数类型) const int RGBRCbI = (int)(RGBRCbF * (1 << Shift) + 0.5); const int RGBRCrI = (int)(RGBRCrF * (1 << Shift) + 0.5); const int RGBGYI = (int)(RGBGYF * (1 << Shift) + 0.5); const int RGBGCbI = (int)(RGBGCbF * (1 << Shift) + 0.5); const int RGBGCrI = (int)(RGBGCrF * (1 << Shift) + 0.5); const int RGBBYI = (int)(RGBBYF * (1 << Shift) + 0.5); const int RGBBCbI = (int)(RGBBCbF * (1 << Shift) + 0.5); const int RGBBCrI = (int)(RGBBCrF * (1 << Shift) + 0.5); Mat RGB2YCbCr(Mat src) { int row = src.rows; int col = src.cols; Mat dst(row, col, CV_8UC3); for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { int Blue = src.at<Vec3b>(i, j)[0]; int Green = src.at<Vec3b>(i, j)[1]; int Red = src.at<Vec3b>(i, j)[2]; dst.at<Vec3b>(i, j)[0] = (int)((YCbCrYRI * Red + YCbCrYGI * Green + YCbCrYBI * Blue + HalfShiftValue) >> Shift); dst.at<Vec3b>(i, j)[1] = (int)(128 + ((YCbCrCbRI * Red + YCbCrCbGI * Green + YCbCrCbBI * Blue + HalfShiftValue) >> Shift)); dst.at<Vec3b>(i, j)[2] = (int)(128 + ((YCbCrCrRI * Red + YCbCrCrGI * Green + YCbCrCrBI * Blue + HalfShiftValue) >> Shift)); } } return dst; } Mat YCbCr2RGB(Mat src) { int row = src.rows; int col = src.cols; Mat dst(row, col, CV_8UC3); for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { int Y = src.at<Vec3b>(i, j)[0]; int Cb = src.at<Vec3b>(i, j)[1] - 128; int Cr = src.at<Vec3b>(i, j)[2] - 128; int Red = Y + ((RGBRCrI * Cr + HalfShiftValue) >> Shift); int Green = Y + ((RGBGCbI * Cb + RGBGCrI * Cr + HalfShiftValue) >> Shift); int Blue = Y + ((RGBBCbI * Cb + HalfShiftValue) >> Shift); if (Red > 255) Red = 255; else if (Red < 0) Red = 0; if (Green > 255) Green = 255; else if (Green < 0) Green = 0; // 编译后应该比三目运算符的效率高 if (Blue > 255) Blue = 255; else if (Blue < 0) Blue = 0; dst.at<Vec3b>(i, j)[0] = Blue; dst.at<Vec3b>(i, j)[1] = Green; dst.at<Vec3b>(i, j)[2] = Red; } } return dst; } template<typename T> inline T sign(T const &input) { return input >= 0 ? 1 : -1; } Mat AutomaticWhiteBalanceMethod(Mat src) { int row = src.rows; int col = src.cols; if (src.channels() == 4) { cvtColor(src, src, CV_BGRA2BGR); } Mat input = RGB2YCbCr(src); Mat mark(row, col, CV_8UC1); int sum = 0; for (int i = 0; i < row; i += 100) { for (int j = 0; j < col; j += 100) { if (i + 100 < row && j + 100 < col) { Rect rect(j, i, 100, 100); Mat temp = input(rect); Scalar global_mean = mean(temp); double dr = 0, db = 0; for (int x = 0; x < 100; x++) { uchar *ptr = temp.ptr<uchar>(x) + 1; for (int y = 0; y < 100; y++) { dr += pow(abs(*ptr - global_mean[1]), 2); ptr++; db += pow(abs(*ptr - global_mean[2]), 2); ptr++; ptr++; } } dr /= 10000; db /= 10000; double cr_left_criteria = 1.5 * global_mean[1] + dr * sign(global_mean[1]); double cr_right_criteria = 1.5 * dr; double cb_left_criteria = global_mean[2] + db * sign(global_mean[2]); double cb_right_criteria = 1.5 * db; for (int x = 0; x < 100; x++) { uchar *ptr = temp.ptr<uchar>(x) + 1; for (int y = 0; y < 100; y++) { uchar cr = *ptr; ptr++; uchar cb = *ptr; ptr++; ptr++; if ((cr - cb_left_criteria) < cb_right_criteria && (cb - cr_left_criteria) < cr_right_criteria) { sum++; mark.at<uchar>(i + x, j + y) = 1; } else { mark.at<uchar>(i + x, j + y) = 0; } } } } } } int Threshold = 0; int Ymax = 0; int Light[256] = { 0 }; for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { if (mark.at<uchar>(i, j) == 1) { Light[(int)(input.at<Vec3b>(i, j)[0])]++; } Ymax = max(Ymax, (int)(input.at<Vec3b>(i, j)[0])); } } printf("maxY: %d\n", Ymax); int sum2 = 0; for (int i = 255; i >= 0; i--) { sum2 += Light[i]; if (sum2 >= sum * 0.1) { Threshold = i; break; } } printf("Threshold: %d\n", Threshold); printf("Sum: %d Sum2: %d\n", sum, sum2); double Blue = 0; double Green = 0; double Red = 0; int cnt2 = 0; for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { if (mark.at<uchar>(i, j) == 1 && (int)(input.at<Vec3b>(i, j)[0]) >= Threshold) { Blue += 1.0 * src.at<Vec3b>(i, j)[0]; Green += 1.0 * src.at<Vec3b>(i, j)[1]; Red += 1.0 * src.at<Vec3b>(i, j)[2]; cnt2++; } } } Blue /= cnt2; Green /= cnt2; Red /= cnt2; printf("%.5f %.5f %.5f\n", Blue, Green, Red); Mat dst(row, col, CV_8UC3); double maxY = Ymax; for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { int B = (int)(maxY * src.at<Vec3b>(i, j)[0] / Blue); int G = (int)(maxY * src.at<Vec3b>(i, j)[1] / Green); int R = (int)(maxY * src.at<Vec3b>(i, j)[2] / Red); if (B > 255) B = 255; else if (B < 0) B = 0; if (G > 255) G = 255; else if (G < 0) G = 0; if (R > 255) R = 255; else if (R < 0) R = 0; dst.at<Vec3b>(i, j)[0] = B; dst.at<Vec3b>(i, j)[1] = G; dst.at<Vec3b>(i, j)[2] = R; } } return dst; }
图像均为算法处理前和处理后的顺序。
论文原文:http://140.112.114.62/bitstream/246246/200704191001444/1/01465458.pdf
参考文章:https://www.cnblogs.com/Imageshop/archive/2013/04/20/3032062.html
对比前面的灰度世界算法和完美反射算法后,这个算法的效果确实要好很多,原文的内容基本上我的博客就写完了,感兴趣可以再去读读原文。
欢迎关注我的微信公众号GiantPandaCV,期待和你一起交流机器学习,深度学习,图像算法,优化技术,比赛及日常生活等。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。