赞
踩
循环神经网络RNN用于语言分析, 序列化数据。
有一组序列数据 data 0,1,2,3.
在当预测 result0 的时候,我们基于的是 data0, 同样在预测其他数据的时候, 我们也都只单单基于单个的数据. 每次使用的神经网络都是同一个 NN.
但data 0123 之间是有关联顺序的,普通神经网络结构无法让nn了解这些数据之间的关系
每次 RNN 运算完之后都会产生一个对于当前状态的描述 , state. 我们用简写 S( t) 代替, 然后这个 RNN开始分析 x(t+1) , 他会根据 x(t+1)产生s(t+1), 不过此时 y(t+1) 是由 s(t) 和 s(t+1) 共同创造的. 所以我们通常看到的 RNN 也可以表达成这种样子.
RNN是在有顺序的数据上进行学习的,最开始的数据要经过最长时间才能抵达最后,然后计算得到误差,而且在 反向传递 得到的误差的时候, 在每一步都会乘以一个自己的参数 W。
普通 RNN 没有办法回忆起久远记忆的原因:
LSTM 和普通 RNN 相比, 多出了三个控制器. (输入控制, 输出控制, 忘记控制)
""" View more, visit my tutorial page: https://mofanpy.com/tutorials/ My Youtube Channel: https://www.youtube.com/user/MorvanZhou Dependencies: torch: 0.4 matplotlib torchvision """ import torch from torch import nn import torchvision.datasets as dsets import torchvision.transforms as transforms import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # Hyper Parameters EPOCH = 1 # 训练整批数据次数train the training data n times, to save time, we just train 1 epoch BATCH_SIZE = 64 TIME_STEP = 28 # rnn 时间步数 / 图片高度 rnn time step / image height INPUT_SIZE = 28 # rnn 每步输入值 / 图片每行像素 rnn input size / image width LR = 0.01 # 学习效率 learning rate DOWNLOAD_MNIST = True # set to True if haven't download the data # Mnist digital dataset # 下载训练所需要的数据集 train_data = dsets.MNIST( root='./mnist/', train=True, # this is training data transform=transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0] download=DOWNLOAD_MNIST, # download it if you don't have it ) # plot one example print(train_data.data.size()) # (60000, 28, 28) print(train_data.targets.size()) # (60000) # Data Loader for easy mini-batch return in training # 准备训练集 train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) # convert test data into Variable, pick 2000 samples to speed up testing # 准备测试集 test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor()) test_x = test_data.data.type(torch.FloatTensor)[:2000]/255. # shape (2000, 28, 28) value in range(0,1) test_y = test_data.targets.numpy()[:2000] # covert to numpy array class RNN(nn.Module): def __init__(self): super(RNN, self).__init__() self.rnn = nn.LSTM( # 使用LSTM效果比RNN好 if use nn.RNN(), it hardly learns input_size=INPUT_SIZE, # 图片每行的数据像素点 hidden_size=64, # rnn hidden unit num_layers=1, # 有几层RNN layers # number of rnn layer batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size) ) self.out = nn.Linear(64, 10) # 输出层,64(因为hidden大小为64),10(最后识别的是10个数字类别) def forward(self, x): # x shape (batch, time_step, input_size) # r_out shape (batch, time_step, output_size) # h_n shape (n_layers, batch, hidden_size) # h_c shape (n_layers, batch, hidden_size) r_out, (h_n, h_c) = self.rnn(x, None) # None 表示 hidden state 会用全0的 state None represents zero initial hidden state # choose r_out at the last time step # 选取最后一个时间点的 r_out 输出 # 这里 r_out[:, -1, :] 的值也是 h_n 的值 out = self.out(r_out[:, -1, :]) return out rnn = RNN() print(rnn) optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted # training and testing for epoch in range(EPOCH): for step, (b_x, b_y) in enumerate(train_loader): # gives batch data b_x = b_x.view(-1, 28, 28) # reshape x to (batch, time_step, input_size) print(str(step) + ": " + str(b_x.size())) output = rnn(b_x) # rnn output loss = loss_func(output, b_y) # cross entropy loss optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients if step % 50 == 0: test_output = rnn(test_x) # (samples, time_step, input_size) pred_y = torch.max(test_output, 1)[1].data.numpy() accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size) print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy) # print 10 predictions from test data test_output = rnn(test_x[:10].view(-1, 28, 28)) pred_y = torch.max(test_output, 1)[1].data.numpy() print(pred_y, 'prediction number') print(test_y[:10], 'real number')
使用sin预测cos
""" View more, visit my tutorial page: https://mofanpy.com/tutorials/ My Youtube Channel: https://www.youtube.com/user/MorvanZhou Dependencies: torch: 0.4 matplotlib numpy """ import torch from torch import nn import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # Hyper Parameters TIME_STEP = 10 # rnn time step INPUT_SIZE = 1 # rnn input size LR = 0.02 # learning rate # show data steps = np.linspace(0, np.pi * 2, 100, dtype=np.float32) # float32 for converting torch FloatTensor print(steps.size) x_np = np.sin(steps) y_np = np.cos(steps) # plt.plot(steps, y_np, 'r-', label='target (cos)') # plt.plot(steps, x_np, 'b-', label='input (sin)') # plt.legend(loc='best') # plt.show() class RNN(nn.Module): def __init__(self): super(RNN, self).__init__() self.rnn = nn.RNN( input_size=INPUT_SIZE, hidden_size=32, # rnn hidden unit num_layers=1, # number of rnn layer batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size) ) self.out = nn.Linear(32, 1) # 因为 hidden state 是连续的, 所以我们要一直传递这一个 state def forward(self, x, h_state): # x (batch, time_step, input_size) # h_state (n_layers, batch, hidden_size) # r_out (batch, time_step, hidden_size) r_out, h_state = self.rnn(x, h_state) # h_state 也要作为 RNN 的一个输入 print("r_out size: " + str(r_out.size())) print(r_out.size(1)) outs = [] # save all predictions # 保存所有时间点的预测值 for time_step in range(r_out.size(1)): # calculate output for each time step outs.append(self.out(r_out[:, time_step, :])) print("outs size:" + str(outs.size())) return torch.stack(outs, dim=1), h_state # instead, for simplicity, you can replace above codes by follows # r_out = r_out.view(-1, 32) # outs = self.out(r_out) # outs = outs.view(-1, TIME_STEP, 1) # return outs, h_state # or even simpler, since nn.Linear can accept inputs of any dimension # and returns outputs with same dimension except for the last # outs = self.out(r_out) # return outs rnn = RNN() print(rnn) optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters loss_func = nn.MSELoss() h_state = None # for initial hidden state plt.figure(1, figsize=(12, 5)) plt.ion() # continuously plot for step in range(100): print("当前:" + str(step)) start, end = step * np.pi, (step + 1) * np.pi # time range # use sin predicts cos steps = np.linspace(start, end, TIME_STEP, dtype=np.float32, endpoint=False) # float32 for converting torch FloatTensor x_np = np.sin(steps) y_np = np.cos(steps) x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis]) # shape (batch, time_step, input_size) y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis]) print("x: ") print(x) prediction, h_state = rnn(x, h_state) # rnn output # !! next step is important !! h_state = h_state.data # repack the hidden state, break the connection from last iteration loss = loss_func(prediction, y) # calculate loss optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients # # plotting # plt.plot(steps, y_np.flatten(), 'r-') # plt.plot(steps, prediction.data.numpy().flatten(), 'b-') # plt.draw(); # plt.pause(0.05) # plt.ioff() # plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。