赞
踩
1.多特征输入单输出,回归预测。利用CNN进行特征提取,将提取后的特征放入LSSVM进行回归实现组合预测。
2.直接替换Excel数据即可用,注释清晰,适合新手小白
3.附赠示例数据,输入格式如图2所示,直接运行main文件一键出图
%% 清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear % 清空变量 clc % 清空命令行 %% 导入数据 res = xlsread('data.xlsx'); %% 划分训练集和测试集 temp = randperm(103); P_train = res(temp(1: 80), 1: 7)'; T_train = res(temp(1: 80), 8)'; M = size(P_train, 2); P_test = res(temp(81: end), 1: 7)'; T_test = res(temp(81: end), 8)'; N = size(P_test, 2); %% 数据归一化 [p_train, ps_input] = mapminmax(P_train, 0, 1); p_test = mapminmax('apply', P_test, ps_input); [t_train, ps_output] = mapminmax(T_train, 0, 1); t_test = mapminmax('apply', T_test, ps_output); %% 仿真测试 t_sim1 = sim(net, p_train); t_sim2 = sim(net, p_test); %% 数据反归一化 T_sim1 = mapminmax('reverse', t_sim1, ps_output); T_sim2 = mapminmax('reverse', t_sim2, ps_output); %% 均方根误差 error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M); error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N); %% 相关指标计算 % 决定系数 R2 R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2; R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2; disp(['训练集数据的R2为:', num2str(R1)]) disp(['测试集数据的R2为:', num2str(R2)]) % 平均绝对误差 MAE mae1 = sum(abs(T_sim1 - T_train)) ./ M ; mae2 = sum(abs(T_sim2 - T_test )) ./ N ; disp(['训练集数据的MAE为:', num2str(mae1)]) disp(['测试集数据的MAE为:', num2str(mae2)]) % 平均相对误差 MBE mbe1 = sum(T_sim1 - T_train) ./ M ; mbe2 = sum(T_sim2 - T_test ) ./ N ; disp(['训练集数据的MBE为:', num2str(mbe1)]) disp(['测试集数据的MBE为:', num2str(mbe2)])
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。