赞
踩
BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自然语言推理、文本分类等在许多自然语言处理任务中发挥着重要作用。模型是基于Transformer中的Encoder并加上双向的结构。
BERT模型的主要创新点都在pre-train方法上,即用了Masked Language Model和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation。
BERT预训练之后,会保存它的Embedding table和12层Transformer权重(BERT-BASE)或24层Transformer权重(BERT-LARGE)。使用预训练好的BERT模型可以对下游任务进行Fine-tuning,比如:文本分类、相似度判断、阅读理解等。
应用价值
对话情绪识别(Emotion Detection,简称EmoTect),专注于识别智能对话场景中用户的情绪,针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。 对话情绪识别适用于聊天、客服等多个场景,能够帮助企业更好地把握对话质量、改善产品的用户交互体验,也能分析客服服务质量、降低人工质检成本。
代码示例:
# 下载依赖 !pip uninstall mindspore -y !pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14 !pip install mindnlp import os import mindspore from mindspore.dataset import text, GeneratorDataset, transforms from mindspore import nn, context from mindnlp._legacy.engine import Trainer, Evaluator from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback from mindnlp._legacy.metrics import Accuracy # 定义情绪数据集对象 class SentimentDataset: """Sentiment Dataset""" def __init__(self, path): self.path = path self._labels, self._text_a = [], [] self._load() def _load(self): with open(self.path, "r", encoding="utf-8") as f: dataset = f.read() lines = dataset.split("\n") for line in lines[1:-1]: label, text_a = line.split("\t") self._labels.append(int(label)) self._text_a.append(text_a) def __getitem__(self, index): return self._labels[index], self._text_a[index] def __len__(self): return len(self._labels)
准备来自于百度飞桨团队已标注的、经过分词预处理的机器人聊天数据集。数据由两列组成,以制表符(‘\t’)分隔,第一列是情绪分类的类别(0表示消极;1表示中性;2表示积极),第二列是以空格分词的中文文本,如下示例,文件为 utf8 编码。
label–text_a
0–谁骂人了?我从来不骂人,我骂的都不是人,你是人吗 ?
1–我有事等会儿就回来和你聊
2–我见到你很高兴谢谢你帮我
代码示例:
# 下载数据集 !wget https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz -O emotion_detection.tar.gz !tar xvf emotion_detection.tar.gz # 数据加载与预处理 import numpy as np def process_dataset(source, tokenizer, max_seq_len=64, batch_size=32, shuffle=True): is_ascend = mindspore.get_context('device_target') == 'Ascend' column_names = ["label", "text_a"] dataset = GeneratorDataset(source, column_names=column_names, shuffle=shuffle) # transforms type_cast_op = transforms.TypeCast(mindspore.int32) def tokenize_and_pad(text): if is_ascend: tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len) else: tokenized = tokenizer(text) return tokenized['input_ids'], tokenized['attention_mask'] # map dataset dataset = dataset.map(operations=tokenize_and_pad, input_columns="text_a", output_columns=['input_ids', 'attention_mask']) dataset = dataset.map(operations=[type_cast_op], input_columns="label", output_columns='labels') # batch dataset if is_ascend: dataset = dataset.batch(batch_size) else: dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id), 'attention_mask': (None, 0)}) return dataset from mindnlp.transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') dataset_train = process_dataset(SentimentDataset("data/train.tsv"), tokenizer) dataset_val = process_dataset(SentimentDataset("data/dev.tsv"), tokenizer) dataset_test = process_dataset(SentimentDataset("data/test.tsv"), tokenizer, shuffle=False)
通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。
代码示例:
from mindnlp.transformers import BertForSequenceClassification, BertModel from mindnlp._legacy.amp import auto_mixed_precision # set bert config and define parameters for training model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=3) model = auto_mixed_precision(model, 'O1') optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5) metric = Accuracy() # define callbacks to save checkpoints ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='bert_emotect', epochs=1, keep_checkpoint_max=2) best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='bert_emotect_best', auto_load=True) trainer = Trainer(network=model, train_dataset=dataset_train, eval_dataset=dataset_val, metrics=metric, epochs=5, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb]) %%time # start training trainer.run(tgt_columns="labels")
运行结果:
将验证数据集加再进训练好的模型,对数据集进行验证,查看模型在验证数据上面的效果,此处的评价指标为准确率。
代码示例:
evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)
evaluator.run(tgt_columns="labels")
验证结果:
遍历推理数据集,将结果与标签进行统一展示。
代码示例:
dataset_infer = SentimentDataset("data/infer.tsv") def predict(text, label=None): label_map = {0: "消极", 1: "中性", 2: "积极"} text_tokenized = Tensor([tokenizer(text).input_ids]) logits = model(text_tokenized) predict_label = logits[0].asnumpy().argmax() info = f"inputs: '{text}', predict: '{label_map[predict_label]}'" if label is not None: info += f" , label: '{label_map[label]}'" print(info) from mindspore import Tensor for label, text in dataset_infer: predict(text, label)
运行结果:
准备输入自定义推理数据,展示模型的泛化能力。
代码示例:
predict("家人们咱就是说一整个无语住了 绝绝子叠buff")
predict("我靠")
predict("我热爱学习")
# 运行结果:
'''
inputs: '家人们咱就是说一整个无语住了 绝绝子叠buff', predict: '中性'
inputs: '我靠', predict: '消极'
inputs: '我热爱学习', predict: '积极'
'''
截图时间
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。