当前位置:   article > 正文

特征构建:生成多项式特征_两个连续特征构造多项式

两个连续特征构造多项式

 机器学习,一些比赛竞赛中,通常会给一定的特征数据进行分类或者回归预测。有时需要构建更多的特征,然后对特征再进行特征选择。通过增加一些输入数据的非线性特征来增加模型的复杂度通常是有效的。一个简单通用的办法是使用多项式特征,这可以获得特征的更高维度和互相间关系的项。这在 PolynomialFeatures 中实现:

>>> import numpy as np
>>> from sklearn.preprocessing import PolynomialFeatures
>>> X = np.arange(6).reshape(3, 2)
>>> X                                                 
array([[0, 1],
       [2, 3],
       [4, 5]])
>>> poly = PolynomialFeatures(2)
>>> poly.fit_transform(X)                             
array([[  1.,   0.,   1.,   0.,   0.,   1.],
       [  1.,   2.,   3.,   4.,   6.,   9.],
       [  1.,   4.,   5.,  16.,  20.,  25.]])

X 的特征已经从 (X_1, X_2) 转换为 (1, X_1, X_2, X_1^2, X_1X_2, X_2^2) 。

在一些情况下,只需要特征间的交互项,这可以通过设置 interaction_only=True 来得到:

>>> X = np.arange(9).reshape(3, 3)
>>> X                                                 
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> poly = PolynomialFeatures(degree=3, interaction_only=True)
>>> poly.fit_transform(X)                             
array([[   1.,    0.,    1.,    2.,    0.,    0.,    2.,    0.],
       [   1.,    3.,    4.,    5.,   12.,   15.,   20.,   60.],
       [   1.,    6.,    7.,    8.,   42.,   48.,   56.,  336.]])

X的特征已经从 (X_1, X_2, X_3) 转换为 (1, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3) 。


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/526091
推荐阅读
相关标签
  

闽ICP备14008679号