当前位置:   article > 正文

算法学习笔记10:二分查找_二分查找当low等于查找数时

二分查找当low等于查找数时

二分查找(上):如何用最省内存的方式实现快速查找功能


今天介绍一种针对有序数据集合的查找算法:二分查找(Binary Search)算法,也叫折半查找算法。二分查找的思想非常简单,但是看似越简单的东西往往越难掌握好,想要灵活应用就更加困难。

老规矩,我们还是来看一道思考题。

假设我们有 1000 万个整数数据,每个数据占 8 个字节,如何设计数据结构和算法,快速判断某个整数是否出现在这 1000 万数据中? 我们希望这个功能不要占用太多的内存空间,最多不要超过 100MB,你会怎么做呢?带着这个问题,让我们进入今天的内容吧!


无处不在的二分思想

二分查找是一种非常简单易懂的快速查找算法,生活中到处可见。比如说,我们现在来做一个猜字游戏。我随机写一个 0 到 99 之间的数字,然后你来猜我写的是什么。猜的过程中,你每猜一次,我就会告诉你猜的大了还是小了,直到猜中为止。你来想想,如何快速猜中我写的数字呢?

假设我写的数字是 23,你可以按照下面的步骤来试一试。(如果猜测范围的数字有偶数个,中间数有两个,就选择较小的那个。)

img

7 次就猜出来了,是不是很快?这个例子用的就是二分思想,按照这个思想,即便我让你猜的是 0 到 999 的数字,最多也只要 10 次就能猜中。

这是一个生活中的例子,我们现在回到实际的开发场景中。假设有 1000 条订单数据,已经按照订单金额从小到大排序,每个订单金额都不同,并且最小单位是元。我们现在想知道是否存在金额等于 19 元的订单。如果存在,则返回订单数据,如果不存在则返回 null。

最简单的办法当然是从第一个订单开始,一个一个遍历这 1000 个订单,直到找到金额等于 19 元的订单为止。但这样查找会比较慢,最坏情况下,可能要遍历完这 1000 条记录才能找到。那用二分查找能不能更快速地解决呢?

为了方便讲解,我们假设只有 10 个订单,订单金额分别是:8,11,19,23,27,33,45,55,67,98。

还是利用二分思想,每次都与区间的中间数据比对大小,缩小查找区间的范围。为了更加直观,我画了一张查找过程的图。其中,low 和 high 表示待查找区间的下标,mid 表示待查找区间的中间元素下标。

img

看懂这两个例子,你现在对二分的思想应该掌握得妥妥的了。我这里稍微总结升华一下,二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0


O(logn) 惊人的查找速度

二分查找是一种非常高效的查找算法,高效到什么程度呢?我们来分析一下它的时间复杂度。

我们假设数据大小是 n,每次查找后数据都会缩小为原来的一半,也就是会除以 2。最坏情况下,直到查找区间被缩小为空才停止。

img

可以看出来,这是一个等比数列。其中 n/2k=1 时,k 的值就是总共缩小的次数。而每一次缩小操作只涉及两个数据的大小比较,所以,经过了 k 次区间缩小操作,时间复杂度就是 O(k)。通过 n/2k=1,我们可以求得 k=log2n,所以时间复杂度就是 O(logn)。

二分查找是我们目前为止遇到的第一个时间复杂度为 O(logn) 的算法。后面章节我们还会讲堆、二叉树的操作等等,它们的时间复杂度也是 O(logn)。我这里就再深入地讲讲 O(logn) 这种对数时间复杂度。这是一种极其高效的时间复杂度,有的时候甚至比时间复杂度是常量级 O(1) 的算法还要高效。为什么这么说呢?

因为 logn 是一个非常“恐怖”的数量级,即便 n 非常非常大,对应的 logn 也很小。比如 n 等于 2 的 32 次方,这个数很大了吧?大约是 42 亿。也就是说,如果我们在 42 亿个数据中用二分查找一个数据,最多需要比较 32 次。

我们前面讲过,用大 O 标记法表示时间复杂度的时候,会省略掉常数、系数和低阶。对于常量级时间复杂度的算法来说,O(1) 有可能表示的是一个非常大的常量值,比如 O(1000)、O(10000)。所以,常量级时间复杂度的算法有时候可能还没有 O(logn) 的算法执行效率高。

反过来,对数对应的就是指数。有一个非常著名的“阿基米德与国王下棋的故事”,你可以自行搜索一下,感受一下指数的“恐怖”。这也是为什么我们说,指数时间复杂度的算法在大规模数据面前是无效的。


二分查找的递归与非递归实现

实际上,简单的二分查找并不难写,注意我这里的“简单”二字。下一节,我们会讲到二分查找的变体问题,那才是真正烧脑的。今天,我们来看如何来写最简单的二分查找。

最简单的情况就是有序数组中不存在重复元素,我们在其中用二分查找值等于给定值的数据。我用 Java 代码实现了一个最简单的二分查找算法。

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;

  while (low <= high) {
    int mid = (low + high) / 2;
    if (a[mid] == value) {
      return mid;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      high = mid - 1;
    }
  }

  return -1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

这个代码我稍微解释一下,low、high、mid 都是指数组下标,其中 low 和 high 表示当前查找的区间范围,初始 low=0, high=n-1。mid 表示[low, high]的中间位置。我们通过对比 a[mid]与 value 的大小,来更新接下来要查找的区间范围,直到找到或者区间缩小为 0,就退出。如果你有一些编程基础,看懂这些应该不成问题。现在,我就着重强调一下容易出错的 3 个地方

1. 循环退出条件

注意是 low<=high,而不是 low<high。

2. mid 的取值

实际上,mid=(low+high)/2 这种写法是有问题的。因为如果 low 和 high 比较大的话,两者之和就有可能会溢出。改进的方法是将 mid 的计算方式写成 low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以 2 操作转化成位运算 low+((high-low)>>1)。因为相比除法运算来说,计算机处理位运算要快得多。

3. low 和 high 的更新

low=mid+1,high=mid-1。注意这里的 +1 和 -1,如果直接写成 low=mid 或者 high=mid,就可能会发生死循环。比如,当 high=3,low=3 时,如果 a[3]不等于 value,就会导致一直循环不退出。

如果你留意我刚讲的这三点,我想一个简单的二分查找你已经可以实现了。实际上,二分查找除了用循环来实现,还可以用递归来实现,过程也非常简单。

// 二分查找的递归实现
public int bsearch(int[] a, int n, int val) {
  return bsearchInternally(a, 0, n - 1, val);
}

private int bsearchInternally(int[] a, int low, int high, int value) {
  if (low > high) return -1;

  int mid =  low + ((high - low) >> 1);
  if (a[mid] == value) {
    return mid;
  } else if (a[mid] < value) {
    return bsearchInternally(a, mid+1, high, value);
  } else {
    return bsearchInternally(a, low, mid-1, value);
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

二分查找应用场景的局限性

前面我们分析过,二分查找的时间复杂度是 O(logn),查找数据的效率非常高。不过,并不是什么情况下都可以用二分查找,它的应用场景是有很大局限性的。那什么情况下适合用二分查找,什么情况下不适合呢?

首先,二分查找依赖的是顺序表结构,简单点说就是数组。

那二分查找能否依赖其他数据结构呢?比如链表。答案是不可以的,主要原因是二分查找算法需要按照下标随机访问元素。我们在数组和链表那两节讲过,数组按照下标随机访问数据的时间复杂度是 O(1),而链表随机访问的时间复杂度是 O(n)。所以,如果数据使用链表存储,二分查找的时间复杂就会变得很高。

二分查找只能用在数据是通过顺序表来存储的数据结构上。如果你的数据是通过其他数据结构存储的,则无法应用二分查找。

其次,二分查找针对的是有序数据。

二分查找对这一点的要求比较苛刻,数据必须是有序的。如果数据没有序,我们需要先排序。前面章节里我们讲到,排序的时间复杂度最低是 O(nlogn)。所以,如果我们针对的是一组静态的数据,没有频繁地插入、删除,我们可以进行一次排序,多次二分查找。这样排序的成本可被均摊,二分查找的边际成本就会比较低。

但是,如果我们的数据集合有频繁的插入和删除操作,要想用二分查找,要么每次插入、删除操作之后保证数据仍然有序,要么在每次二分查找之前都先进行排序。针对这种动态数据集合,无论哪种方法,维护有序的成本都是很高的。

所以,二分查找只能用在插入、删除操作不频繁,一次排序多次查找的场景中。针对动态变化的数据集合,二分查找将不再适用。那针对动态数据集合,如何在其中快速查找某个数据呢?别急,等到二叉树那一节我会详细讲。

再次,数据量太小不适合二分查找。

如果要处理的数据量很小,完全没有必要用二分查找,顺序遍历就足够了。比如我们在一个大小为 10 的数组中查找一个元素,不管用二分查找还是顺序遍历,查找速度都差不多。只有数据量比较大的时候,二分查找的优势才会比较明显。

不过,这里有一个例外。如果数据之间的比较操作非常耗时,不管数据量大小,我都推荐使用二分查找。比如,数组中存储的都是长度超过 300 的字符串,如此长的两个字符串之间比对大小,就会非常耗时。我们需要尽可能地减少比较次数,而比较次数的减少会大大提高性能,这个时候二分查找就比顺序遍历更有优势。

最后,数据量太大也不适合二分查找。

二分查找的底层需要依赖数组这种数据结构,而数组为了支持随机访问的特性,要求内存空间连续,对内存的要求比较苛刻。比如,我们有 1GB 大小的数据,如果希望用数组来存储,那就需要 1GB 的连续内存空间。

注意这里的“连续”二字,也就是说,即便有 2GB 的内存空间剩余,但是如果这剩余的 2GB 内存空间都是零散的,没有连续的 1GB 大小的内存空间,那照样无法申请一个 1GB 大小的数组。而我们的二分查找是作用在数组这种数据结构之上的,所以太大的数据用数组存储就比较吃力了,也就不能用二分查找了。


解答开篇

二分查找的理论知识你应该已经掌握了。我们来看下开篇的思考题:如何在 1000 万个整数中快速查找某个整数?

这个问题并不难。我们的内存限制是 100MB,每个数据大小是 8 字节,最简单的办法就是将数据存储在数组中,内存占用差不多是 80MB,符合内存的限制。借助今天讲的内容,我们可以先对这 1000 万数据从小到大排序,然后再利用二分查找算法,就可以快速地查找想要的数据了。

看起来这个问题并不难,很轻松就能解决。实际上,它暗藏了“玄机”。如果你对数据结构和算法有一定了解,知道散列表、二叉树这些支持快速查找的动态数据结构。你可能会觉得,用散列表和二叉树也可以解决这个问题。实际上是不行的。

虽然大部分情况下,用二分查找可以解决的问题,用散列表、二叉树都可以解决。但是,我们后面会讲,不管是散列表还是二叉树,都会需要比较多的额外的内存空间。如果用散列表或者二叉树来存储这 1000 万的数据,用 100MB 的内存肯定是存不下的。而二分查找底层依赖的是数组,除了数据本身之外,不需要额外存储其他信息,是最省内存空间的存储方式,所以刚好能在限定的内存大小下解决这个问题。


二分查找(下):如何快速定位IP对应的省份地址


通过 IP 地址来查找 IP 归属地的功能,不知道你有没有用过?没用过也没关系,你现在可以打开百度,在搜索框里随便输一个 IP 地址,就会看到它的归属地。

img

这个功能并不复杂,它是通过维护一个很大的 IP 地址库来实现的。地址库中包括 IP 地址范围和归属地的对应关系。

当我们想要查询 202.102.133.13 这个 IP 地址的归属地时,我们就在地址库中搜索,发现这个 IP 地址落在[202.102.133.0, 202.102.133.255]这个地址范围内,那我们就可以将这个 IP 地址范围对应的归属地“山东东营市”显示给用户了。

现在我的问题是,在庞大的地址库中逐一比对 IP 地址所在的区间,是非常耗时的。假设我们有 12 万条这样的 IP 区间与归属地的对应关系,如何快速定位出一个 IP 地址的归属地呢?

是不是觉得比较难?不要紧,等学完今天的内容,你就会发现这个问题其实很简单。

前面我讲了二分查找的原理,并且介绍了最简单的一种二分查找的代码实现。今天我们来讲几种二分查找的变形问题。

不知道你有没有听过这样一个说法:“十个二分九个错”。二分查找虽然原理极其简单,但是想要写出没有 Bug 的二分查找并不容易。

唐纳德·克努特(Donald E.Knuth)在《计算机程序设计艺术》的第 3 卷《排序和查找》中说到:“尽管第一个二分查找算法于 1946 年出现,然而第一个完全正确的二分查找算法实现直到 1962 年才出现。”

你可能会说,我们上一节学的二分查找的代码实现并不难写啊。那是因为上一节讲的只是二分查找中最简单的一种情况,在不存在重复元素的有序数组中,查找值等于给定值的元素。最简单的二分查找写起来确实不难,但是,二分查找的变形问题就没那么好写了。

二分查找的变形问题很多,我只选择几个典型的来讲解,其他的你可以借助我今天讲的思路自己来分析。

img

需要特别说明一点,为了简化讲解,今天的内容,我都以数据是从小到大排列为前提,如果你要处理的数据是从大到小排列的,解决思路也是一样的。同时,我希望你最好先自己动手试着写一下这 4 个变形问题,然后再看我的讲述,这样你就会对我说的“二分查找比较难写”有更加深的体会了。


变体一:查找第一个值等于给定值的元素

上一节中的二分查找是最简单的一种,即有序数据集合中不存在重复的数据,我们在其中查找值等于某个给定值的数据。如果我们将这个问题稍微修改下,有序数据集合中存在重复的数据,我们希望找到第一个值等于给定值的数据,这样之前的二分查找代码还能继续工作吗?

比如下面这样一个有序数组,其中,a[5],a[6],a[7]的值都等于 8,是重复的数据。我们希望查找第一个等于 8 的数据,也就是下标是 5 的元素。

img

如果我们用上一节课讲的二分查找的代码实现,首先拿 8 与区间的中间值 a[4]比较,8 比 6 大,于是在下标 5 到 9 之间继续查找。下标 5 和 9 的中间位置是下标 7,a[7]正好等于 8,所以代码就返回了。

尽管 a[7]也等于 8,但它并不是我们想要找的第一个等于 8 的元素,因为第一个值等于 8 的元素是数组下标为 5 的元素。我们上一节讲的二分查找代码就无法处理这种情况了。所以,针对这个变形问题,我们可以稍微改造一下上一节的代码。

100 个人写二分查找就会有 100 种写法。网上有很多关于变形二分查找的实现方法,有很多写得非常简洁,比如下面这个写法。但是,尽管简洁,理解起来却非常烧脑,也很容易写错。

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid = low + ((high - low) >> 1);
    if (a[mid] >= value) {
      high = mid - 1;
    } else {
      low = mid + 1;
    }
  }

  if (low < n && a[low]==value) return low;
  else return -1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

看完这个实现之后,你是不是觉得很不好理解?如果你只是死记硬背这个写法,我敢保证,过不了几天,你就会全都忘光,再让你写,90% 的可能会写错。所以,我换了一种实现方法,你看看是不是更容易理解呢?

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      if ((mid == 0) || (a[mid - 1] != value)) return mid;
      else high = mid - 1;
    }
  }
  return -1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

我来稍微解释一下这段代码。a[mid]跟要查找的 value 的大小关系有三种情况:大于、小于、等于。对于 a[mid]>value 的情况,我们需要更新 high= mid-1;对于 a[mid]<value 的情况,我们需要更新 low=mid+1。这两点都很好理解。那当 a[mid]=value 的时候应该如何处理呢?

如果我们查找的是任意一个值等于给定值的元素,当 a[mid]等于要查找的值时,a[mid]就是我们要找的元素。但是,如果我们求解的是第一个值等于给定值的元素,当 a[mid]等于要查找的值时,我们就需要确认一下这个 a[mid]是不是第一个值等于给定值的元素。

我们重点看第 11 行代码。如果 mid 等于 0,那这个元素已经是数组的第一个元素,那它肯定是我们要找的;如果 mid 不等于 0,但 a[mid]的前一个元素 a[mid-1]不等于 value,那也说明 a[mid]就是我们要找的第一个值等于给定值的元素。

如果经过检查之后发现 a[mid]前面的一个元素 a[mid-1]也等于 value,那说明此时的 a[mid]肯定不是我们要查找的第一个值等于给定值的元素。那我们就更新 high=mid-1,因为要找的元素肯定出现在[low, mid-1]之间。

对比上面的两段代码,是不是下面那种更好理解?实际上,**很多人都觉得变形的二分查找很难写,主要原因是太追求第一种那样完美、简洁的写法。**而对于我们做工程开发的人来说,代码易读懂、没 Bug,其实更重要,所以我觉得第二种写法更好。


变体二:查找最后一个值等于给定值的元素

前面的问题是查找第一个值等于给定值的元素,我现在把问题稍微改一下,查找最后一个值等于给定值的元素,又该如何做呢?

如果你掌握了前面的写法,那这个问题你应该很轻松就能解决。你可以先试着实现一下,然后跟我写的对比一下。

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      if ((mid == n - 1) || (a[mid + 1] != value)) return mid;
      else low = mid + 1;
    }
  }
  return -1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

我们还是重点看第 11 行代码。如果 a[mid]这个元素已经是数组中的最后一个元素了,那它肯定是我们要找的;如果 a[mid]的后一个元素 a[mid+1]不等于 value,那也说明 a[mid]就是我们要找的最后一个值等于给定值的元素。

如果我们经过检查之后,发现 a[mid]后面的一个元素 a[mid+1]也等于 value,那说明当前的这个 a[mid]并不是最后一个值等于给定值的元素。我们就更新 low=mid+1,因为要找的元素肯定出现在[mid+1, high]之间。


变体三:查找第一个大于等于给定值的元素

现在我们再来看另外一类变形问题。在有序数组中,查找第一个大于等于给定值的元素。比如,数组中存储的这样一个序列:3,4,6,7,10。如果查找第一个大于等于 5 的元素,那就是 6。

实际上,实现的思路跟前面的那两种变形问题的实现思路类似,代码写起来甚至更简洁。

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] >= value) {
      if ((mid == 0) || (a[mid - 1] < value)) return mid;
      else high = mid - 1;
    } else {
      low = mid + 1;
    }
  }
  return -1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

如果 a[mid]小于要查找的值 value,那要查找的值肯定在[mid+1, high]之间,所以,我们更新 low=mid+1。

对于 a[mid]大于等于给定值 value 的情况,我们要先看下这个 a[mid]是不是我们要找的第一个值大于等于给定值的元素。如果 a[mid]前面已经没有元素,或者前面一个元素小于要查找的值 value,那 a[mid]就是我们要找的元素。这段逻辑对应的代码是第 7 行。

如果 a[mid-1]也大于等于要查找的值 value,那说明要查找的元素在[low, mid-1]之间,所以,我们将 high 更新为 mid-1。


变体四:查找最后一个小于等于给定值的元素

现在,我们来看最后一种二分查找的变形问题,查找最后一个小于等于给定值的元素。比如,数组中存储了这样一组数据:3,5,6,8,9,10。最后一个小于等于 7 的元素就是 6。是不是有点类似上面那一种?实际上,实现思路也是一样的。

有了前面的基础,你完全可以自己写出来了,所以我就不详细分析了。我把代码贴出来,你可以写完之后对比一下。

public int bsearch7(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else {
      if ((mid == n - 1) || (a[mid + 1] > value)) return mid;
      else low = mid + 1;
    }
  }
  return -1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

解答开篇

好了,现在我们回头来看开篇的问题:如何快速定位出一个 IP 地址的归属地?

现在这个问题应该很简单了。如果 IP 区间与归属地的对应关系不经常更新,我们可以先预处理这 12 万条数据,让其按照起始 IP 从小到大排序。如何来排序呢?我们知道,IP 地址可以转化为 32 位的整型数。所以,我们可以将起始地址,按照对应的整型值的大小关系,从小到大进行排序。

然后,这个问题就可以转化为我刚讲的第四种变形问题“在有序数组中,查找最后一个小于等于某个给定值的元素”了。

当我们要查询某个 IP 归属地时,我们可以先通过二分查找,找到最后一个起始 IP 小于等于这个 IP 的 IP 区间,然后,检查这个 IP 是否在这个 IP 区间内,如果在,我们就取出对应的归属地显示;如果不在,就返回未查找到。

IP 地址的归属地?

现在这个问题应该很简单了。如果 IP 区间与归属地的对应关系不经常更新,我们可以先预处理这 12 万条数据,让其按照起始 IP 从小到大排序。如何来排序呢?我们知道,IP 地址可以转化为 32 位的整型数。所以,我们可以将起始地址,按照对应的整型值的大小关系,从小到大进行排序。

然后,这个问题就可以转化为我刚讲的第四种变形问题“在有序数组中,查找最后一个小于等于某个给定值的元素”了。

当我们要查询某个 IP 归属地时,我们可以先通过二分查找,找到最后一个起始 IP 小于等于这个 IP 的 IP 区间,然后,检查这个 IP 是否在这个 IP 区间内,如果在,我们就取出对应的归属地显示;如果不在,就返回未查找到。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/624425
推荐阅读
相关标签
  

闽ICP备14008679号