赞
踩
论文地址:http://www.cnki.com.cn/Article/CJFDTotal-ZNZK202004012.htm
import torch.nn as nn import torch.utils.model_zoo as model_zoo from torch.nn import functional as F import torch class SEBlock(nn.Module): def __init__(self,ch_in): super(SEBlock, self).__init__() self.relu = nn.ReLU(inplace=False) self.global_pool = nn.AdaptiveAvgPool2d((1, 1)) # N * 32 * 1 * 1 self.fc1 = nn.Linear(in_features = int(ch_in), out_features = int(ch_in//2)) self.fc2 = nn.Linear(in_features = int(ch_in//2), out_features = int(ch_in)) self.sigmoid = nn.Sigmoid() def forward(self, x): # sequeeze out = self.global_pool(x) out = out.view(out.size(0), -1) # Excitation out = self.fc1(out) out = self.relu(out) out = self.fc2(out) out = self.sigmoid(out) out = out.view(out.size(0), out.size(1), 1, 1) # Scale # out = out * x # out += x # out = self.relu(out) return out class DoubleConv(nn.Module): def __init__(self, in_ch, out_ch): super(DoubleConv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), #添加了BN层 nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, input): return self.conv(input) class Unet(nn.Module): def __init__(self, in_ch, out_ch): super(Unet, self).__init__() self.pool = nn.MaxPool2d(2) self.conv1 = DoubleConv(in_ch, 64) self.pool1 = nn.MaxPool2d(2) self.conv2 = DoubleConv(64, 128) self.pool2 = nn.MaxPool2d(2) self.conv3 = DoubleConv(128, 256) self.pool3 = nn.MaxPool2d(2) self.conv4 = DoubleConv(256, 512) self.pool4 = nn.MaxPool2d(2) self.conv5 = DoubleConv(512, 1024) # 逆卷积,也可以使用上采样(保证k=stride,stride即上采样倍数) self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2) self.conv6 = DoubleConv(1024, 512) self.up7 = nn.ConvTranspose2d(512, 256, 2, stride=2) self.conv7 = DoubleConv(512, 256) self.up8 = nn.ConvTranspose2d(256, 128, 2, stride=2) self.conv8 = DoubleConv(256, 128) self.up9 = nn.ConvTranspose2d(128, 64, 2, stride=2) self.conv9 = DoubleConv(128, 64) self.conv10 = nn.Conv2d(64, out_ch, 1) self.conv1_dilation = nn.Conv2d(2048, 256, 1, stride=1, padding=0, bias=False, dilation=1) # dilation就是空洞率,即间隔 self.conv2_dilation = nn.Conv2d(2048, 256, 2, stride=1, padding=2, bias=False, dilation=2) # dilation就是空洞率,即间隔 self.conv4_dilation = nn.Conv2d(2048, 256, 4, stride=1, padding=4, bias=False, dilation=4) # dilation就是空洞率,即间隔 self.global_pool = nn.AdaptiveAvgPool2d((1, 1)) self.upsample = nn.Upsample(scale_factor=7, mode='bicubic', align_corners=True) self.conv_c = nn.Conv2d(2816, 1024, 1, stride=1, padding=0, bias=False, dilation=1) # dilation就是空洞率,即间隔 self.upsample1 = nn.Upsample(scale_factor=2, mode='bicubic', align_corners=True) self.R1 = nn.Sequential( nn.Conv2d(1, 64, 3, 1, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=False) ) # N * 16 * 16 * 16 self.RP2 = nn.Sequential( nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=False), nn.MaxPool2d(2, 2), nn.ReLU(inplace=False) ) # N * 16 * 16 * 16 self.RP3 = nn.Sequential( nn.Conv2d(128, 256, 3, 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=False), nn.MaxPool2d(2, 2), nn.ReLU(inplace=False) ) self.RP4 = nn.Sequential( nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=False), nn.MaxPool2d(2, 2), nn.ReLU(inplace=False) ) self.RP5 = nn.Sequential( nn.Conv2d(512, 1024, 3, 1, 1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=False), nn.MaxPool2d(2, 2), nn.ReLU(inplace=False) ) self.SE1 = SEBlock(64) self.SE2 = SEBlock(128) self.SE3 = SEBlock(256) self.SE4 = SEBlock(512) self.SE5 = SEBlock(1024) def forward(self, DSM, RGB): c1_DSM = self.R1(DSM) # [2, 64, 512, 512] c1_SE_DSM = self.SE1(c1_DSM) # [2, 64, 1, 1] c1_RGB = self.conv1(RGB) # [2, 64, 512, 512] c1_RGB = c1_SE_DSM * c1_RGB # [2, 64, 512, 512] p1_RGB = self.pool1(c1_RGB) # [2, 64, 256, 256] c2_DSM = self.RP2(c1_DSM) # [2, 128, 256, 256] c2_SE_DSM = self.SE2(c2_DSM) # [2, 128, 1, 1] c2_RGB = self.conv2(p1_RGB) # [2, 128, 256, 256] c2_RGB = c2_SE_DSM * c2_RGB # [2, 128, 256, 256] p2_RGB = self.pool2(c2_RGB) # [2, 128, 128, 128] c3_DSM = self.RP3(c2_DSM) # [2, 256, 128, 128] c3_SE_DSM = self.SE3(c3_DSM) # [2, 256, 1, 1] c3_RGB = self.conv3(p2_RGB) # [2, 256, 128, 128] c3_RGB = c3_SE_DSM * c3_RGB # [2, 256, 128, 128] p3_RGB = self.pool3(c3_RGB) # [2, 256, 64, 64] c4_DSM = self.RP4(c3_DSM) # [2, 512, 64, 64] c4_SE_DSM = self.SE4(c4_DSM) # [2, 512, 1, 1] c4_RGB = self.conv4(p3_RGB) # [2, 512, 64, 64] c4_RGB = c4_SE_DSM * c4_RGB # [2, 512, 64, 64] p4_RGB = self.pool4(c4_RGB) # [2, 512, 32, 32] c5_DSM = self.RP5(c4_DSM) # [2, 1024, 32, 32] c5_SE_DSM = self.SE5(c5_DSM) # [2, 1024, 1, 1] c5_RGB = self.conv5(p4_RGB) # [2, 1024, 32, 32] c5_RGB = c5_SE_DSM * c5_RGB # [2, 1024, 32, 32] up_6 = self.up6(c5_RGB) # [2, 512, 64, 64] merge6 = torch.cat([up_6, c4_RGB], dim=1) # [2, 1024, 64, 64] c6 = self.conv6(merge6) # [2, 512, 64, 64] up_7 = self.up7(c6) # [2, 256, 128, 128] merge7 = torch.cat([up_7, c3_RGB], dim=1) # [2, 512, 128, 128] c7 = self.conv7(merge7) # [2, 256, 128, 128] up_8 = self.up8(c7) # [2, 128, 256, 256] merge8 = torch.cat([up_8, c2_RGB], dim=1) # [2, 256, 256, 256] c8 = self.conv8(merge8) # [2, 128, 256, 256] up_9 = self.up9(c8) # [2, 64, 512, 512] merge9 = torch.cat([up_9, c1_RGB], dim=1) # [2, 128, 512, 512] c9 = self.conv9(merge9) # [2, 64, 512, 512] c10 = self.conv10(c9) # [2, 3, 512, 512] out = nn.Sigmoid()(c10) # [2, 3, 512, 512] return out if __name__ == "__main__": DSM = torch.randn(2, 1, 512, 512) RGB = torch.randn(2, 3, 512, 512) UNet = Unet(3,3) out_result = UNet(DSM,RGB) print(out_result) print(out_result.shape)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。