当前位置:   article > 正文

论文复现--RMPE: Regional Multi-person Pose Estimation_checking internet connectivity ... please make sur

checking internet connectivity ... please make sure you are connected to the

paper code home video

目录

paper code home video

Step1.创建新的nvidia-docker container名为MotionCatch

Step2.在此docker下安装anaconda3 

出现问题1:提示网络连接失败

Checking Internet connectivity,Please make sure you are connected to the internet

Step3.按照安装官方文档在MotionCatch进行配置

 1. 创建conda环境

出现问题2:

You may need to closed and restart your shell after running 'code init'

2. 安装PyTorch

3. 获取AlphaPose源码

4. 安装

出现问题3:Subprocess.CalledProcessedError:Command '[Which','g++']'returned non-zero exit status 1.

出现问题4:error No such file or directory :':usr/local/cuda:/usr/local/cuda/bin/nvcc'

出现问题5:

.../compiler_compat/id:cannot find -LOSMesa : No such  file or directory

.../compiler_compat/id:cannot find -LGL : No such  file or directory

.../compiler_compat/id:cannot find -LGLU : No such  file or directory

出现问题6:Setup script exited with 

Beginning with Matplotlib 3.6 ,Python 3.8 above is required

 出现问题7:Import error:cannot import name 'get_installed_dostribution' from 'pip_internal.utils.misc'(/home/anaconda3/envs/alphapose/lib/python3.7/site-packages/pip/_internal/utils/misc.py)

Step4.目标检测模型配置 

1.下载yolov3-spp.weights

2.下载这个模型halpe26_fast_res50_256x192.pth

出现问题8:

ImportError: libgthread-2.0.so.0: cannot open shared object file: No such file or directory

3.下载第二个模型halpe136_fast50_regression_256x192.pth

4.下载前两个multi_domain_fast50_dcn_combined_256x192.pt和 multi_domain_fast50_regression_256x192.pth

Step5.姿态追踪模型配置  

1首先尝试第一个模型 下载这个

 2 尝试第二个模型 下载第一个

Conda list

Step1.创建新的nvidia-docker container名为MotionCatch

nvidia-docker run -it --name MotionCatch nvidia/cuda:11.0.3-base-ubuntu18.04 /bin/bash

Step2.在此docker下安装anaconda3 

下载版本Anaconda3-5.3.0-Linux-x86_64.sh 安装在MotionCatch内

  1. docker inspect --format="{{.Id}}" MotionCatch # 查询该容器的container_id
  2. docker cp /home/sqy/Software_Anzhuang/Anaconda3-5.3.0-Linux-x86_64.sh 24520982511f3b8d72adea23a0113817c49d8c991ade2edb3c6d6fa43305ca5e:/home# 移动到home下
  3. bash Anaconda3-5.3.0-Linux-x86_64.sh

出现问题1:提示网络连接失败

Checking Internet connectivity,Please make sure you are connected to the internet

​解决方法:这是vscode相关的,不影响anaconda 直接输入no

安装结束,配置环境变量

  1. apt-get update
  2. apt-get upgrade
  3. apt-get install vim
  4. vi ~/.bashrc
  5. export export PATH="/home/anaconda3/bin:$PATH"# conda init里有这条指令,复制下来添加到末尾,路径为安装路径
  6. source ~/.bashrc

检查安装是否成功

conda -V #显示conda 4.5.11

注意,conda卸载只需要把anaconda3文件夹整个删除,再把bashrc里刚才添加的export语句删除即可

(Tips:中间我看了下磁盘空间,觉得snapd不爽 卸载了snapd,虽然这和论文没关系:)

  1. sudo apt-get purge snapd
  2. sudo apt autoremove --purge snapd

Step3.按照安装官方文档在MotionCatch进行配置

 1. 创建conda环境

  1. conda create -n alphapose python=3.7 -y
  2. conda activate alphapose

出现问题2:

You may need to closed and restart your shell after running 'code init'

原因:shell未激活,执行conda init是没用的

解决办法: source activate

(Tips:执行conda update conda后若出现conda info -e出错的情况

An unexpected error has occurred.conda has prepared the above report)

解决办法:把anaconda里的lib文件夹 libffi.so.7文件进行软连接更改 ln -s libffi.so.6 libffi.so.7即可

2. 安装PyTorch

conda install pytorch torchvision cudatoolkit=11.3 -c pytorch

3. 获取AlphaPose源码

  1. git clone https://github.com/MVIG-SJTU/AlphaPose.git
  2. cd AlphaPose

4. 安装

  1. # 以下两条环境变量在宿主机和docker bashrc设置,添加完毕后生效
  2. vi ~/.bashrc
  3. export PATH="/usr/local/cuda/bin/:$PATH"
  4. export LD_LIBRARY_PATH="/usr/local/cuda/lib64/:$LD_LIBRARY_PATH"
  5. source ~/.bashrc
  6. # 以下两条在docker安装
  7. python -m pip install cython -i  https://pypi.tuna.tsinghua.edu.cn/simple
  8. sudo apt-get install libyaml-dev
  9. # 仅在Ubuntu18.04进行此设置
  10. locale-gen C.UTF-8
  11. # 如果locale-gen指令未被查到
  12. sudo apt-get install locales
  13. export LANG=C.UTF-8
  14. # 最后执行
  15. python setup.py build develop


出现问题3:Subprocess.CalledProcessedError:Command '[Which','g++']'returned non-zero exit status 1.

出错原因:未安装g++ 

解决办法:apt-get install g++ 

出现问题4:error No such file or directory :':usr/local/cuda:/usr/local/cuda/bin/nvcc'

解决办法:在docker安装CUDA后,并执行export CUDA_HOME=/usr/local/cuda。重新执行python setup.py build develop


出现问题5:

.../compiler_compat/id:cannot find -LOSMesa : No such  file or directory

.../compiler_compat/id:cannot find -LGL : No such  file or directory

.../compiler_compat/id:cannot find -LGLU : No such  file or directory

解决办法:安装缺失的三个动态库 并设置为当前虚拟环境的软连接

  1. apt install libglu1-mesa
  2. apt install -y libosmesa-dev
  3. ln -s /usr/lib/x86_64-linux-gnu/libGL.so.1 /home/anaconda3/envs/alphapose/lib/libGL.so
  4. ln -s /usr/lib/x86_64-linux-gnu/libGLU.so.1 /home/anaconda3/envs/alphapose/lib/libGLU.so
  5. ln -s /usr/lib/x86_64-linux-gnu/libGLX_mesa.so.0.0.0 /home/anaconda3/envs/alphapose/lib/libOSMesa.so

注意:rm -rf build后再执行 python setup.py build develop

出现问题6:Setup script exited with 

Beginning with Matplotlib 3.6 ,Python 3.8 above is required

解决办法:缺什么安装什么,其他错误也是一样(注意加上清华源)

pip install matplotlib -i  https://pypi.tuna.tsinghua.edu.cn/simple

 出现问题7:Import error:cannot import name 'get_installed_dostribution' from 'pip_internal.utils.misc'(/home/anaconda3/envs/alphapose/lib/python3.7/site-packages/pip/_internal/utils/misc.py)

 解决办法:降级pip

python -m pip install pip==21.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

好用的pip下载指令

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn numpy 

编译完成: 

Step4.目标检测模型配置 

1.下载yolov3-spp.weights

yolox-l

分别拷贝到detector/yolo/data和detector/yolox/data(需要自己创建一个data文件夹)

  1. docker cp yolov3-spp.weights 24520982511f3b8d72adea23a0113817c49d8c991ade2edb3c6d6fa43305ca5e:/root/AlphaPose/detector/yolo/data
  2. docker cp yolox_x.pth 24520982511f3b8d72adea23a0113817c49d8c991ade2edb3c6d6fa43305ca5e:/root/AlphaPose/detector/yolox/data

 原始数据

2.下载这个模型halpe26_fast_res50_256x192.pth

(2 3 4的模型都放到/pretrained_models下)

docker cp halpe26_fast_res50_256x192.pth 24520982511f3b8d72adea23a0113817c49d8c991ade2edb3c6d6fa43305ca5e:/root/AlphaPose/pretrained_models
python scripts/demo_inference.py --cfg configs/halpe_26/resnet/256x192_res50_lr1e-3_1x.yaml --checkpoint pretrained_models/halpe26_fast_res50_256x192.pth --indir examples/demo/ --save_img

(想用yolox-l做检测器,请在上述指令加上此参数:--detector yolox-x ) 

出现问题8:

ImportError: libgthread-2.0.so.0: cannot open shared object file: No such file or directory

解决方法:

apt-get install libglib2.0-0

直接跑通

docker cp 24520982511f3b8d72adea23a0113817c49d8c991ade2edb3c6d6fa43305ca5e:/root/AlphaPose/examples/res/vis ./

查看结果:

 

3.下载第二个模型halpe136_fast50_regression_256x192.pth

docker cp halpe136_fast50_regression_256x192.pth 24520982511f3b8d72adea23a0113817c49d8c991ade2edb3c6d6fa43305ca5e:/root/AlphaPose/pretrained_models
python scripts/demo_inference.py --cfg configs/halpe_136/resnet/256x192_res50_lr1e-3_2x-regression.yaml --checkpoint pretrained_models/halpe136_fast50_regression_256x192.pth --indir examples/demo/ --save_img

查看结果

4.下载前两个multi_domain_fast50_dcn_combined_256x192.pt和 multi_domain_fast50_regression_256x192.pth

  1. docker cp multi_domain_fast50_dcn_combined_256x192.pth 24520982511f3b8d72adea23a0113817c49d8c991ade2edb3c6d6fa43305ca5e:/root/AlphaPose/pretrained_models
  2. docker cp multi_domain_fast50_regression_256x192.pth 24520982511f3b8d72adea23a0113817c49d8c991ade2edb3c6d6fa43305ca5e:/root/AlphaPose/pretrained_models
  1. python scripts/demo_inference.py --cfg configs/halpe_coco_wholebody_136/resnet/256x192_res50_lr1e-3_2x-regression.yaml --checkpoint pretrained_models/multi_domain_fast50_regression_256x192.pth --indir examples/demo/ --save_img
  2. python scripts/demo_inference.py --cfg configs/halpe_coco_wholebody_136/resnet/256x192_res50_lr1e-3_2x-dcn-combined.yaml --checkpoint pretrained_models/multi_domain_fast50_dcn_combined_256x192.pth --indir examples/demo/ --save_img

 

Step5.姿态追踪模型配置  

1首先尝试第一个模型 下载这个

模型移动到/root/AlphaPose/trackers/weights(自己创建weights目录)

docker cp osnet_ain_x1_0_msmt17_256x128_amsgrad_ep50_lr0.0015_coslr_b64_fb10_softmax_labsmth_flip_jitter.pth 24520982511f3b8d72adea23a0113817c49d8c991ade2edb3c6d6fa43305ca5e:/root/AlphaPose/trackers/weights

视频移动到 /root/AlphaPose/examples/video_demo

docker cp 1.mp4 24520982511f3b8d72adea23a0113817c49d8c991ade2edb3c6d6fa43305ca5e:/root/AlphaPose/examples/video_demo

(另外,可以更改/AlphaPose/trackers/tracker_cfg.py中的cfg.arch和cfg.loadmodel来更改模型)

跑模型 

python scripts/demo_inference.py --cfg configs/halpe_26/resnet/256x192_res50_lr1e-3_1x.yaml --checkpoint pretrained_models/halpe26_fast_res50_256x192.pth --video examples/video_demo/1.mp4 --outdir examples/res/vis_video --save_video --pose_track

出现问题9:执行卡住CUDA out of memory

可能的原因:内存不够 

因为在执行之前可以执行的图片样例 出现报错

   

此问题尚未解决 但是可以通过宿主机重启docker重新执行之前的图片样例

 2 尝试第二个模型 下载第一个

 模型移动到/root/AlphaPose/detector/tracker/data(需要自己创建data)

 docker cp jde.1088x608.uncertainty.pt 24520982511f3b8d72adea23a0113817c49d8c991ade2edb3c6d6fa43305ca5e:/root/AlphaPose/detector/tracker/data
python scripts/demo_inference.py --cfg configs/halpe_26/resnet/256x192_res50_lr1e-3_1x.yaml --checkpoint pretrained_models/halpe26_fast_res50_256x192.pth --video examples/video_demo/1.mp4 --outdir examples/res/vis_video --save_video --detector tracker

Conda list

  1. # packages in environment at /home/anaconda3/envs/alphapose:
  2. #
  3. # Name Version Build Channel
  4. _libgcc_mutex 0.1 main
  5. _openmp_mutex 5.1 1_gnu
  6. alphapose 0.5.0+a94dae6 dev_0 <develop>
  7. blas 1.0 mkl
  8. brotlipy 0.7.0 py37h27cfd23_1003
  9. bzip2 1.0.8 h7b6447c_0
  10. ca-certificates 2022.07.19 h06a4308_0
  11. certifi 2022.9.14 py37h06a4308_0
  12. cffi 1.15.1 py37h74dc2b5_0
  13. charset-normalizer 2.0.4 pyhd3eb1b0_0
  14. chumpy 0.70 pypi_0 pypi
  15. cryptography 37.0.1 py37h9ce1e76_0
  16. cudatoolkit 11.3.1 h2bc3f7f_2
  17. cycler 0.11.0 pypi_0 pypi
  18. cython 0.29.32 pypi_0 pypi
  19. cython-bbox 0.1.3 pypi_0 pypi
  20. easydict 1.10 pypi_0 pypi
  21. ffmpeg 4.3 hf484d3e_0 pytorch
  22. fonttools 4.37.3 pypi_0 pypi
  23. freetype 2.11.0 h70c0345_0
  24. giflib 5.2.1 h7b6447c_0
  25. gmp 6.2.1 h295c915_3
  26. gnutls 3.6.15 he1e5248_0
  27. halpecocotools 0.0.0 pypi_0 pypi
  28. idna 3.3 pyhd3eb1b0_0
  29. intel-openmp 2021.4.0 h06a4308_3561
  30. jpeg 9e h7f8727e_0
  31. jsonpatch 1.32 pypi_0 pypi
  32. jsonpointer 2.3 pypi_0 pypi
  33. kiwisolver 1.4.4 pypi_0 pypi
  34. lame 3.100 h7b6447c_0
  35. lcms2 2.12 h3be6417_0
  36. ld_impl_linux-64 2.38 h1181459_1
  37. lerc 3.0 h295c915_0
  38. libdeflate 1.8 h7f8727e_5
  39. libffi 3.3 he6710b0_2
  40. libgcc-ng 11.2.0 h1234567_1
  41. libgomp 11.2.0 h1234567_1
  42. libiconv 1.16 h7f8727e_2
  43. libidn2 2.3.2 h7f8727e_0
  44. libpng 1.6.37 hbc83047_0
  45. libstdcxx-ng 11.2.0 h1234567_1
  46. libtasn1 4.16.0 h27cfd23_0
  47. libtiff 4.4.0 hecacb30_0
  48. libunistring 0.9.10 h27cfd23_0
  49. libwebp 1.2.2 h55f646e_0
  50. libwebp-base 1.2.2 h7f8727e_0
  51. lz4-c 1.9.3 h295c915_1
  52. matplotlib 3.5.3 pypi_0 pypi
  53. mkl 2021.4.0 h06a4308_640
  54. mkl-service 2.4.0 py37h7f8727e_0
  55. mkl_fft 1.3.1 py37hd3c417c_0
  56. mkl_random 1.2.2 py37h51133e4_0
  57. munkres 1.1.4 pypi_0 pypi
  58. natsort 8.2.0 pypi_0 pypi
  59. ncurses 6.3 h5eee18b_3
  60. nettle 3.7.3 hbbd107a_1
  61. numpy 1.21.5 py37h6c91a56_3
  62. numpy-base 1.21.5 py37ha15fc14_3
  63. opencv-python 4.6.0.66 pypi_0 pypi
  64. opendr 0.78 pypi_0 pypi
  65. openh264 2.1.1 h4ff587b_0
  66. openssl 1.1.1q h7f8727e_0
  67. packaging 21.3 pypi_0 pypi
  68. pillow 9.2.0 py37hace64e9_1
  69. pip 21.2 pypi_0 pypi
  70. protobuf 3.20.1 pypi_0 pypi
  71. pycocotools 2.0.5 pypi_0 pypi
  72. pycparser 2.21 pyhd3eb1b0_0
  73. pyopenssl 22.0.0 pyhd3eb1b0_0
  74. pyparsing 3.0.9 pypi_0 pypi
  75. pysocks 1.7.1 py37_1
  76. python 3.7.13 h12debd9_0
  77. python-dateutil 2.8.2 pypi_0 pypi
  78. pytorch 1.12.1 py3.7_cuda11.3_cudnn8.3.2_0 pytorch
  79. pytorch-mutex 1.0 cuda pytorch
  80. pyyaml 6.0 pypi_0 pypi
  81. pyzmq 24.0.1 pypi_0 pypi
  82. readline 8.1.2 h7f8727e_1
  83. requests 2.28.1 py37h06a4308_0
  84. scipy 1.7.3 pypi_0 pypi
  85. setuptools 63.4.1 py37h06a4308_0
  86. six 1.16.0 pyhd3eb1b0_1
  87. sqlite 3.39.3 h5082296_0
  88. tensorboardx 2.5.1 pypi_0 pypi
  89. terminaltables 3.1.10 pypi_0 pypi
  90. timm 0.1.20 pypi_0 pypi
  91. tk 8.6.12 h1ccaba5_0
  92. torchvision 0.13.1 py37_cu113 pytorch
  93. tornado 6.2 pypi_0 pypi
  94. tqdm 4.64.1 pypi_0 pypi
  95. typing_extensions 4.3.0 py37h06a4308_0
  96. urllib3 1.26.11 py37h06a4308_0
  97. visdom 0.1.8.9 pypi_0 pypi
  98. websocket-client 1.4.1 pypi_0 pypi
  99. wheel 0.37.1 pyhd3eb1b0_0
  100. xz 5.2.6 h5eee18b_0
  101. zlib 1.2.12 h5eee18b_3
  102. zstd 1.5.2 ha4553b6_0

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/木道寻08/article/detail/866174
推荐阅读
相关标签
  

闽ICP备14008679号